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tl;dr: Make users' passwords 5-6 
orders of magnitude harder to crack. 
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Hank Leininger <hlein@korelogic.com>
D24D 2C2A F3AC B9AE CD03  B506 2D57 32E1 686B 6DB3

Played defense as a sysadmin / security admin since the mid 90's.

Have been doing security consulting since 2000; co-founded 
KoreLogic in 2004.

We created the Crack Me If You Can contest at DEFCON; 2013 was 
its 4th year running.

I also run the MARC mailing list archive site: http://marc.info/

My Background
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● I had the ideas for the following analysis, and the 
enforcement approach described later, in late 2010 
or so.

● In 2013 won a DARPA Cyber FastTrack contract to 
flesh out the research, design, and build a proof of 
concept.

● My coworkers did most of the actual work 
developing the PathWell PoC. 

PathWell Background
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Offline cracking:

● Naive bruteforce (impractical)

● Wordlists

● Mangling rules

Popular classic tools: Crack, L0phtCrack, John the 
Ripper

Classic Password Cracking
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● Password complexity rules

● Minimum length

● Character classes

● Password rotation

● History retention

● Better hash types (rarely implemented)

Classic Defenses
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Today the deck is stacked in the attackers' favor.

● Enterprise software vendors haven't moved to 
stronger hash types.

● Moore's law has helped attackers tremendously.

● Existing defenses (password policies) have lead to 
exploitable predictability.

● Systems with design flaws are vulnerable to pass-the-
hash attacks, which can make password cracking 
unnecessary.

Recent Trends:
Attacker Advantage
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● Legacy systems mean we are still using hash types we have 
known were too weak for many years now.

● UNIX DES was replaced with better things in free UNIXes 
since the 90's, but it's only fairly recently that commercial 
UNIXes have gotten better options.

● NTLM, the strongest hash type offered by the latest Microsoft 
products, was too weak to use even when it was new in 1993.

● {SSHA}, single-round salted SHA-1, is the best offered by 
many enterprise LDAP directories.

● GPU power has made selective brute-forcing practical for 
these weak hashes, even for quite long password lengths.

Recent Trends:
Attacker Advantage
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Password Policies create new exploitable predictability:
● Complexity rules result in users choosing and placing their 

uppers, lowers, numbers, and specials in predictable ways:
● Capitalize the first letter(s) of words (WeakSauce)
● Numbers likely to be at the end, and to be a year 

(WeakSauce2014)
● Add specials to the end (WeakSauce2014!)
● Predictable character choice - '!' is the most common special 

character by a huge margin

● Password rotation results in users simply modifying their old 
passwords in predictable ways:

● “Oct0b3r!” → “N0v3mb3r!”
● “Winter2013!” → “Spring2014!”
● “qWErt78()” → “wERty89)_” 

Recent Trends:
Attacker Advantage
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For about $2,000 you could build a machine with three 
AMD 7970 GPUs.

Each GPU can try ~6,746,000,000 candidate plaintexts per 
second against a list of NTLM hashes, which means about 
20 billion per second for the system.

That machine could try all possible 8-character NTLM 
passwords using printable ASCII (95^8) in 3.8 days.

But as you add length, the time gets longer quickly:
● 9 characters: 360 days (or 18 days for 20 machines)
● 10 characters: 94 years
● 11 characters: 8,900+ years
● 15 characters: 734 billion years

Naive Brute Force

14



● Rather than testing all possible passwords, pick some 
specific subsets, or patterns, and try all passwords that fit 
that pattern (“topology”).

● For instance, "P4ssword13!", "N0vember24@", 
"R3dskins99#" all use the same pattern: Uppercase, 
number, 6 lowercase, 2 numbers, special.

● We will use the same notation as the Hashcat tools:
● 'u' to represent "any uppercase letter"
● 'l' for "lowercase letter"
● 'd' for "digit"
● 's' for "special" (punctuation)

● The above example is then “?u?d?l?l?l?l?l?l?d?d?s”, or just 
“udlllllldds” for short.

Selective Brute Force – Password Patterns
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● u, l, d, s = four possible character sets per password 
character.

● 8 character password: 4^8, or 65,536 possible topologies
● 9 character: 4^9 = 262,144
● 10 character: 4^10 = 1,048,576
● 11 character: 4^11 = 4,194,304
● The 11-character topology udlllllldds has 265 trillion 

possible passwords (A0aaaaaa00! - Z9zzzzzz99~).

● Our example cracking machine, which would take 
8,900 years to exhaust the entire 11-character space,  
could bruteforce that one topology in just 3.6 hours.

Selective Brute Force – Password Patterns
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● The question then is: do users bias towards certain common 
password topologies?

● If you can guess which patterns users have over-used, you 
can effectively bruteforce just those topologies, and crack a 
disproportionate number of passwords.

● In reality you would likely combine that with wordlists, 
mangling rules, and character frequencies to further 
optimize your attack.

● We analyzed the passwords we had cracked from several 
different enterprise assessments, looking for frequently 
used topologies.

Predictable Password Topologies
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● The question then is: do users bias towards certain common 
password topologies? [Spoiler: OMG YES THEY DO.]

● If you can guess which patterns users have over-used, you 
can effectively bruteforce just those topologies, and crack a 
disproportionate number of passwords.

● In reality you would likely combine that with wordlists, 
mangling rules, and character frequencies to further 
optimize your attack.

● We analyzed the passwords we had cracked from several 
different enterprise assessments, looking for frequently 
used topologies.

Predictable Password Topologies
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● 263,356 of 263,888 NTLM logins cracked (including 
histories) – over 99%

● 7,308 unique topologies found

Sample Organization #1:
Fortune 100 Company
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● 263,356 of 263,888 NTLM logins cracked (including 
histories) – over 99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character)
● 33,394 ulllllldd (9 character)
● 27,898 ullldddd
● 19,190 ullllllldd
● 13,204 ulllldddd

Sample Organization #1:
Fortune 100 Company
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● 263,356 of 263,888 NTLM logins cracked (including 
histories) – over 99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

Sample Organization #1:
Fortune 100 Company
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● 263,356 of 263,888 NTLM logins cracked (including 
histories) – over 99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

● The top 5 patterns are used by a total of 48% of all users.
● The top 100 patterns are used by a total of 85% of all users.
● 99.9% of passwords meet their complexity requirements

● They had recently increased their min length to 9.
● Some history entries still had 8-char passwords.
● Look at how similar the top 8-char topologies are to the top 9-char 

ones!  They just added one lowercase letter (used a longer word).

Sample Organization #1:
Fortune 100 Company
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Sample Organization #1:
Fortune 100 Company
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● 419,287 of 449,192 NTLM logins cracked (including 
histories) – 93%

● 14,266 unique topologies found

Sample Organization #2:
Fortune 500 Company
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● 419,287 of 449,192 NTLM logins cracked (including 
histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character)
● 17,914 ullllldds (9 character)
● 14,025 ulldddds
● 12,477 ulllllds
● 9,216 ullsdddd

Sample Organization #2:
Fortune 500 Company
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● 419,287 of 449,192 NTLM logins cracked (including 
histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

Sample Organization #2:
Fortune 500 Company
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● 419,287 of 449,192 NTLM logins cracked (including 
histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

● Top 5 topologies crack 16% of all passwords.

● The top 100 topologies are used by a total of 62% of all 
users.

● They too had recently strengthened their requirements – 
longer minimum and required a special.

Sample Organization #2:
Fortune 500 Company
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Sample Organization #2:
Fortune 500 Company
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We analyzed the password topologies used in 8 
different enterprises of 4,000 or more logins where 
we had cracked more than 90% of all password 
hashes.

We found that they had many popular topologies in 
common.

Similarities Across Organizations
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Similarities Across Organizations

30



This data confirmed things we had long observed anecdotally:

● Users will pick the lowest-common-denominator that will be 
allowed by policies.

● When required to use 3 of 4 character classes, the most 
popular is: one upper, then several lowers, then 2-4 digits.

● If required to use 4 of 4 charsets, users just add a special to 
the end.  (And most often that special character is '!')

● If the minimum length increases, users are most likely to 
just use a longer base word, adding a lowercase letter.

● User behavior trends apply across organizations.

Bottom line: Complexity rules don't help as much as 
enterprises think they do.

Things the Data Told Us
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How about 15-character passwords with minimum 2 
uppercase, 2 lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of 

trillions of years.  It is tempting to think that they “can't be 
cracked”.

● But what if the attacker targets popular topologies?
● I would guess one of the top-5 patterns would be  

ulllsulllldddds: Kore.Rules2014!
● That topology would take 92 compute-years to exhaust.    

Or, 1% every 338 days.
● For 100,000 users with 9 history records, even if only 1% 

use this pattern, you will average cracking one 
password every 81 hours.

How about harder passwords?
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● We need to add a new dimension to password 
strength enforcement.

● Rules like minimum length, minimum character sets 
required, no dictionary words, etc are still needed.

● But we also need a way to prevent users from 
gravitating towards the same password patterns 
(topologies) and overusing them.

Defenses Need to Evolve
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What are some ways we could use this knowledge to 
level the playing field?

● Blacklist the most common, predictable topologies.

● Don't allow multiple users to stack up on the same 
topology – force them to spread out.  “Wear-Level” 
them across the possible topology space.

● Require a minimum topology change between old 
and new passwords.

The primary cost of these is keyspace reduction.

Topology-Related Defenses
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PathWell: Password Topology Histogram 
Wear-Leveling
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User-Selected Topologies:
48% of passwords in top 5 buckets

Wear-Leveled Topologies:
~1 password per bucket



How much does topology wear-leveling increase the attacker's 
work-factor?

● Attacker's work-factor thought of as “work needed to get 
the same percentage of cracks” or “cracks for the same 
work.”

● Best-case (fully random topologies): 6 orders of magnitude 
more work (one million times as long to get the same 
number of cracks, or one millionth as many cracks in the same 
time spent).

● Worst-case (attacker knows and goes after only those 
topologies in use): 2-3 orders of magnitude more work.

● Realistic case (topologies not fully random, attacker makes 
educated guesses): 4-5 orders of magnitude more work.

Topology Wear-Leveling Effectiveness
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● Without wear-leveling, a user with password 
'Kw#46_Ya' is most likely to set their next password 
to (say)  'Kw#47_Ya'

● Likewise, with wear-leveling, that user would likely 
chose 'Kw#46_YA' – the smallest allowable topology 
change.

● So: the attacker who knows what a user's password 
topology was in the past, should search the 
topologies that are “nearest” to it.

● The KoreLogicRulesReplaceNumbers ruleset published 
back in 2010 can easily crack these variations.

Minimum Topology Change
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● "...[T]he Levenshtein distance is a string metric for 
measuring the difference between two sequences. 
Informally, the Levenshtein distance between two words is 
the minimum number of single-character edits (insertion, 
deletion, substitution) required to change one word into 
the other.”

● http://en.wikipedia.org/wiki/Levenshtein_distance
● Michael Scott

● Sometimes also referred to as “edit distance.”

● kitten → mitten = 1
● abounds → abounded = 2
● dessert → desert = 1

Measuring Topology Change:
Levenshtein Distance
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For our examples earlier:

● Kw#46_Ya → Kw#47_Ya
ulsddsul → ulsddsul = Lev distance 0

● Kw#46_Ya → Kw#46_YA
ulsddsul → ulsddsuu = 1

● P4ssword13! → P4sswords13! 
udlllllldds → udllllllldds = 1

● P4ssword13! → P@ssword123 
udlllllldds → usllllllddd = 2

Measuring Topology Change:
Levenshtein Distance
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Don't blacklisting and topology wear-leveling reduce 
the keyspace that an attacker would have to test for 
valid passwords?

How much does this keyspace reduction help the 
attacker?

Cost of Topology-Related Defense:
Keyspace Reduction
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● Blacklisting: For 8-character, 4-charset passwords, 
there are 4^8, or 65,536 topologies.  100 of them is less 
than 0.2% of the keyspace.  That is a trivial cost and we 
should gladly pay it. (The cost drops for longer 
passwords, too.)

● Forcing unique topology use: has the downside that 
the odds that any one randomly selected topology will 
contain a password go up.

● This effect is worse for larger user populations.

● However, this is vanishingly small compared to the cost 
of, say, 5-10% of all users using a single topology that 
the attacker can easily guess.

Cost of Topology-Related Defense:
Keyspace Reduction
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Developed a PAM module that implements (all optional, 
administrator-controlled):

● Auditing

● Blacklisting

● Maximum use-count

● Minimum Levenshtein distance

Developed and tested on multiple Linux distributions; not 
yet tested on any other OS's with PAM support.

PathWell
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Audit mode:

● Each time a password is changed, increment a counter 
for that password's topology.

● Usage counters are not decremented when a password is 
changed (history lasts forever).

● Useful “standalone” (without enforcement) in order to 
quantify the problem in a given enterprise.

● Historical data is used by use-count enforcement.

● This DB is sensitive!  An attacker who captures it gets 
some nice hints.

● Current implementation can track topologies up to 29 
characters long.

PathWell Audit Mode
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Enforcement mode option: blacklisting

● Do not allow any user to set a password that uses a 
known-overused topology.

● We compiled a list of the topologies that we see recur 
between different enterprise networks.

● Administrators can replace or augment our default list 
with their own (enabling audit mode can help build up a 
local, organization-specific list).

● Can also be used to enforce minimum-complexity 
requirements (blacklist all topologies that do not use 4 of 
4 character classes, etc).

PathWell Enforcement Mode
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● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices, 
they will probably make similar choices about what to 
switch to instead.

● We call that herding, and it is bad... in the long run, 
attackers just need to learn and adapt to the next-top-
100 topologies and start over.

● Instead, we want mechanisms to not herd users in a 
group, but rather, shoo them and disperse them more 
widely across the possible topology space.

PathWell Enforcement Mode
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● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices, 
they will probably make similar choices about what to 
switch to instead.

● We call that herding, and it is bad... in the long run, 
attackers just need to learn and adapt to the next-top-
100 topologies and start over.

● Instead, we want mechanisms to not herd users in a 
group, but rather, shoo them and disperse them more 
widely across the possible topology space.

● ...But it is better than nothing.  You don't have to run 
faster than the bear...

PathWell Enforcement Mode
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Enforcement mode option: maxuse

● Requires that Audit Mode is enabled.

● Set the maximum number of passwords that can 
use any given topology.

● Typically set to 1 (each password must use a unique 
topology... until exhaustion/rollover and admins 
increment it to 2, etc).

● If maxuse=1, then an attacker who bruteforces a 
topology will score at most one plaintext.

PathWell Enforcement Mode
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Enforcement mode option: minlev
● PathWell's minlev enforcement compares a user's old 

password's topology to the requested new one.
● minlev=1: new password's topology must not be the 

same as the old.  For a 10-char password, there are 
30 topologies of the same length of Lev distance 1 for 
the attacker to target.

● minlev=2: new topology must be at least two changes 
away from the old.  For a 10-char password, there are 
405 possible 10-char topologies that are 2 Lev 
distance away (and more if the length is changed).

● This does not need audit mode to be enabled.

PathWell Enforcement Mode 
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Will users revolt?
● Any new control that adds work for them will be 

resisted.
● Could be mitigated by user-hinting and training 

(which have their own costs).
● We need some test beds to figure out things like: 

● How many tries does it take the average user to 
succeed in creating a new password?

● Which combination of options (blacklist, minlev, 
etc) provides the most security for the least user 
burden?

● Any volunteers?

User Reception
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Pretty math is one thing; how about a real test?

● Crack Me If You Can 2013 included some PathWell-related 
experiments.

● “Company1” - “Company5”: non-PathWell-related collections 
of password hashes (~85% of the total contest hashes).

● “Company6”: ~10k hashes following the merged distribution 
from our 8 enterprise samples (a baseline control).

● “Company7”: Wear-Leveled but no blacklisting.  ~10k unique 
topologies used once each-starting with the most popular 
and radiating outward.

● “Company8”: Wear-Leveled using randomly distributed 
topologies.

CMIYC Experiment
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These were then used for different hash types:

Note: We know that 9 char is still fatally short for NTLMs and 
unsalted SHA1 – we used them to keep the contest engaging.

CMIYC Experiment
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Length Hash Type % of Length-N

8 UNIX DES crypt 50

8 Salted Sha1 ({SSHA}) 25

8 FreeBSD MD5 ($1$) 25

9+ NTLM (NT MD4) 75

9+ Unsalted Sha1 ({SHA}) 25



“What the hell was Company8 doing? 
 We can't crack any of them!”

CMIYC Experiment Results
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Pro class teams' merged unique cracks

Street class teams' merged unique cracks

CMIYC Experiment Results
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Hash Type Company6 (control) Company7 (unique, 
predictable)

Company8 (unique, 
random)

NTLM 1368 101 7

NSLDAP (SHA1) 181 8 0

UNIX DES 30 1 0

Salted SHA1 9 1 0

FreeBSD MD5 2 0 0

Hash Type Company6 Company7 Company8

NTLM 648 53 0

NSLDAP (SHA1) 209 0 0

UNIX DES 9 1 0

Salted SHA1 2 0 0

FreeBSD MD5 0 0 0
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Example /etc/pam.d settings:
● Default:

password  required  pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password  required  pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password  optional  pam_permit.so

● Audit mode:
password  required  pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password  required  pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password  optional  pam_pathwell.so mode=monitor use_authtok
password  optional  pam_permit.so

● Blacklist mode:
password  required  pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password  required  pam_pathwell.so mode=enforce use_authtok blacklist
password  required  pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password  optional  pam_permit.so

● Maxuse mode:
password  required  pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password  required  pam_pathwell.so mode=enforce use_authtok maxuse=1
password  required  pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password  optional  pam_pathwell.so mode=monitor use_authtok
password  optional  pam_permit.so

● Minlev mode:
password  required  pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password  required  pam_pathwell.so mode=enforce use_authtok minlev=2
password  required  pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password  optional  pam_permit.so

Example Configurations

56



● Some example errors from various enforcement modes 
(syslogged, not visible to the user):
Nov 13 22:36:50 foo passwd[12416]: pam_pathwell(passwd:chauthtok): 
Release='0.6.0'; Library='1:0:0'; Module='0:1:0'; 
PamFlags='0x00002000'; Mode='enforce'; User='testuser'; Error='The 
topology associated with the chosen password has been 
blacklisted.';

Nov 13 22:37:06 foo passwd[12418]: pam_pathwell(passwd:chauthtok): 
Release='0.6.0'; Library='1:0:0'; Module='0:1:0'; 
PamFlags='0x00002000'; Mode='enforce'; User='testuser'; Error='The 
topology associated with the chosen password would exceed the 
maximum allowed use count.';

● Nov 13 22:37:45 foo passwd[12420]: pam_pathwell(passwd:chauthtok): 
Release='0.6.0'; Library='1:0:0'; Module='0:1:0'; 
PamFlags='0x00002000'; Mode='enforce'; User='testuser'; Error='The 
topology associated with the chosen password does not meet the 
minimum required Lev distance.';

Example Error Messages
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● Need to test / gather data with real users

● Audit mode: does our current list of the worst topologies 
hold up for other user populations?

● When the different enforcement modes are enabled, how 
many tries does it take the user to successfully set a new 
password?

● Study user hinting options.

● Doing a usability study this summer.

● Again, any volunteers to do a pilot deployment?

PathWell: Next Steps for the Project
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● Open source the current PAM implementation – later 
this summer (granting a license for our pending 
patent).

● Support for enterprise environments

● Windows Active Directory!

● Enterprise LDAP platforms

● Other UNIX (Non-Linux) PAM systems

● Large web applications / websites?

● NIS

● Non-password applications?  PINs?

PathWell: Next Steps for the Code
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How will attackers – cracking tools, techniques – 
adjust and adapt to PathWell?

PathWell: Next Steps for Attackers?
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Questions?

Hank Leininger <hlein@korelogic.com>
D24D 2C2A F3AC B9AE CD03  B506 2D57 32E1 686B 6DB3

PathWell Project <pathwell-project@korelogic.com>
42E7 8319 21F3 01C8 2D72  A591 35EA 3CC7 502D 942F

Thanks to:
Klayton Monroe Sean Segreti
Shawn Wilson Mick Wollman
BITSys DARPA!
CMIYC Teams Hashcat / JTR

That's all folks
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● https://blog.korelogic.com/  ← will post links to this talk soon

● @CrackMeIfYouCan on Twitter

● CMIYC contest sites; past years have teams' writeups:
● http://contest-2014.korelogic.com/
● http://contest-2013.korelogic.com/
● http://contest-2012.korelogic.com/
● http://contest-2011.korelogic.com/
● http://contest-2010.korelogic.com/

● My coworker Rick Redman has given a number of talks about advanced 
password cracking techniques:
● Passwords13: http://www.youtube.com/watch?v=5i_Im6JntPQ
● ISSA: http://infosec-summit.issa-balt.org/html/2010_agenda.html

Rick goes into detail about advanced cracking techniques, various rules 
we've written for different tools & how to write your own.

● An interesting study about studying password selection: “On The 
Ecological Validity of a Password Study”: 
http://cups.cs.cmu.edu/soups/2013/proceedings/a13_Fahl.pdf

Other Reading
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