
PathWell: Password Topology
Histogram Wear-Leveling

June 2014
BSides Asheville

Hank Leininger – KoreLogic

https://www.korelogic.com/

tl;dr: Make users' passwords 5-6
orders of magnitude harder to crack.

My Background

Classic Password Cracking

Classic Defenses

Recent Trends

PathWell

Examples

Next Steps

Agenda

3

Hank Leininger <hlein@korelogic.com>
D24D 2C2A F3AC B9AE CD03 B506 2D57 32E1 686B 6DB3

Played defense as a sysadmin / security admin since the mid 90's.

Have been doing security consulting since 2000; co-founded
KoreLogic in 2004.

We created the Crack Me If You Can contest at DEFCON; 2013 was
its 4th year running.

I also run the MARC mailing list archive site: http://marc.info/

My Background

4

mailto:hlein@korelogic.com

● I had the ideas for the following analysis, and the
enforcement approach described later, in late 2010
or so.

● In 2013 won a DARPA Cyber FastTrack contract to
flesh out the research, design, and build a proof of
concept.

● My coworkers did most of the actual work
developing the PathWell PoC.

PathWell Background

5

My Background

Classic Password Cracking

Classic Defenses

Recent Trends

PathWell

Examples

Next Steps

Agenda

6

Offline cracking:

● Naive bruteforce (impractical)

● Wordlists

● Mangling rules

Popular classic tools: Crack, L0phtCrack, John the
Ripper

Classic Password Cracking

7

My Background

Classic Password Cracking

Classic Defenses

Recent Trends

PathWell

Examples

Next Steps

Agenda

8

● Password complexity rules

● Minimum length

● Character classes

● Password rotation

● History retention

● Better hash types (rarely implemented)

Classic Defenses

9

My Background

Classic Password Cracking

Classic Defenses

Recent Trends

PathWell

Examples

Next Steps

Agenda

10

Today the deck is stacked in the attackers' favor.

● Enterprise software vendors haven't moved to
stronger hash types.

● Moore's law has helped attackers tremendously.

● Existing defenses (password policies) have lead to
exploitable predictability.

● Systems with design flaws are vulnerable to pass-the-
hash attacks, which can make password cracking
unnecessary.

Recent Trends:
Attacker Advantage

11

● Legacy systems mean we are still using hash types we have
known were too weak for many years now.

● UNIX DES was replaced with better things in free UNIXes
since the 90's, but it's only fairly recently that commercial
UNIXes have gotten better options.

● NTLM, the strongest hash type offered by the latest Microsoft
products, was too weak to use even when it was new in 1993.

● {SSHA}, single-round salted SHA-1, is the best offered by
many enterprise LDAP directories.

● GPU power has made selective brute-forcing practical for
these weak hashes, even for quite long password lengths.

Recent Trends:
Attacker Advantage

12

Password Policies create new exploitable predictability:
● Complexity rules result in users choosing and placing their

uppers, lowers, numbers, and specials in predictable ways:
● Capitalize the first letter(s) of words (WeakSauce)
● Numbers likely to be at the end, and to be a year

(WeakSauce2014)
● Add specials to the end (WeakSauce2014!)
● Predictable character choice - '!' is the most common special

character by a huge margin

● Password rotation results in users simply modifying their old
passwords in predictable ways:

● “Oct0b3r!” → “N0v3mb3r!”
● “Winter2013!” → “Spring2014!”
● “qWErt78()” → “wERty89)_”

Recent Trends:
Attacker Advantage

13

For about $2,000 you could build a machine with three
AMD 7970 GPUs.

Each GPU can try ~6,746,000,000 candidate plaintexts per
second against a list of NTLM hashes, which means about
20 billion per second for the system.

That machine could try all possible 8-character NTLM
passwords using printable ASCII (95^8) in 3.8 days.

But as you add length, the time gets longer quickly:
● 9 characters: 360 days (or 18 days for 20 machines)
● 10 characters: 94 years
● 11 characters: 8,900+ years
● 15 characters: 734 billion years

Naive Brute Force

14

● Rather than testing all possible passwords, pick some
specific subsets, or patterns, and try all passwords that fit
that pattern (“topology”).

● For instance, "P4ssword13!", "N0vember24@",
"R3dskins99#" all use the same pattern: Uppercase,
number, 6 lowercase, 2 numbers, special.

● We will use the same notation as the Hashcat tools:
● 'u' to represent "any uppercase letter"
● 'l' for "lowercase letter"
● 'd' for "digit"
● 's' for "special" (punctuation)

● The above example is then “?u?d?l?l?l?l?l?l?d?d?s”, or just
“udlllllldds” for short.

Selective Brute Force – Password Patterns

15

● u, l, d, s = four possible character sets per password
character.

● 8 character password: 4^8, or 65,536 possible topologies
● 9 character: 4^9 = 262,144
● 10 character: 4^10 = 1,048,576
● 11 character: 4^11 = 4,194,304
● The 11-character topology udlllllldds has 265 trillion

possible passwords (A0aaaaaa00! - Z9zzzzzz99~).

● Our example cracking machine, which would take
8,900 years to exhaust the entire 11-character space,
could bruteforce that one topology in just 3.6 hours.

Selective Brute Force – Password Patterns

16

● The question then is: do users bias towards certain common
password topologies?

● If you can guess which patterns users have over-used, you
can effectively bruteforce just those topologies, and crack a
disproportionate number of passwords.

● In reality you would likely combine that with wordlists,
mangling rules, and character frequencies to further
optimize your attack.

● We analyzed the passwords we had cracked from several
different enterprise assessments, looking for frequently
used topologies.

Predictable Password Topologies

17

● The question then is: do users bias towards certain common
password topologies? [Spoiler: OMG YES THEY DO.]

● If you can guess which patterns users have over-used, you
can effectively bruteforce just those topologies, and crack a
disproportionate number of passwords.

● In reality you would likely combine that with wordlists,
mangling rules, and character frequencies to further
optimize your attack.

● We analyzed the passwords we had cracked from several
different enterprise assessments, looking for frequently
used topologies.

Predictable Password Topologies

18

● 263,356 of 263,888 NTLM logins cracked (including
histories) – over 99%

● 7,308 unique topologies found

Sample Organization #1:
Fortune 100 Company

19

● 263,356 of 263,888 NTLM logins cracked (including
histories) – over 99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character)
● 33,394 ulllllldd (9 character)
● 27,898 ullldddd
● 19,190 ullllllldd
● 13,204 ulllldddd

Sample Organization #1:
Fortune 100 Company

20

● 263,356 of 263,888 NTLM logins cracked (including
histories) – over 99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

Sample Organization #1:
Fortune 100 Company

21

● 263,356 of 263,888 NTLM logins cracked (including
histories) – over 99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

● The top 5 patterns are used by a total of 48% of all users.
● The top 100 patterns are used by a total of 85% of all users.
● 99.9% of passwords meet their complexity requirements

● They had recently increased their min length to 9.
● Some history entries still had 8-char passwords.
● Look at how similar the top 8-char topologies are to the top 9-char

ones! They just added one lowercase letter (used a longer word).

Sample Organization #1:
Fortune 100 Company

22

Sample Organization #1:
Fortune 100 Company

23

● 419,287 of 449,192 NTLM logins cracked (including
histories) – 93%

● 14,266 unique topologies found

Sample Organization #2:
Fortune 500 Company

24

● 419,287 of 449,192 NTLM logins cracked (including
histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character)
● 17,914 ullllldds (9 character)
● 14,025 ulldddds
● 12,477 ulllllds
● 9,216 ullsdddd

Sample Organization #2:
Fortune 500 Company

25

● 419,287 of 449,192 NTLM logins cracked (including
histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

Sample Organization #2:
Fortune 500 Company

26

● 419,287 of 449,192 NTLM logins cracked (including
histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

● Top 5 topologies crack 16% of all passwords.

● The top 100 topologies are used by a total of 62% of all
users.

● They too had recently strengthened their requirements –
longer minimum and required a special.

Sample Organization #2:
Fortune 500 Company

27

Sample Organization #2:
Fortune 500 Company

28

We analyzed the password topologies used in 8
different enterprises of 4,000 or more logins where
we had cracked more than 90% of all password
hashes.

We found that they had many popular topologies in
common.

Similarities Across Organizations

29

Similarities Across Organizations

30

This data confirmed things we had long observed anecdotally:

● Users will pick the lowest-common-denominator that will be
allowed by policies.

● When required to use 3 of 4 character classes, the most
popular is: one upper, then several lowers, then 2-4 digits.

● If required to use 4 of 4 charsets, users just add a special to
the end. (And most often that special character is '!')

● If the minimum length increases, users are most likely to
just use a longer base word, adding a lowercase letter.

● User behavior trends apply across organizations.

Bottom line: Complexity rules don't help as much as
enterprises think they do.

Things the Data Told Us

31

How about 15-character passwords with minimum 2
uppercase, 2 lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of

trillions of years. It is tempting to think that they “can't be
cracked”.

● But what if the attacker targets popular topologies?
● I would guess one of the top-5 patterns would be

ulllsulllldddds: Kore.Rules2014!
● That topology would take 92 compute-years to exhaust.

Or, 1% every 338 days.
● For 100,000 users with 9 history records, even if only 1%

use this pattern, you will average cracking one
password every 81 hours.

How about harder passwords?

32

My Background

Classic Password Cracking

Classic Defenses

Recent Trends

PathWell

Examples

Next Steps

Agenda

33

● We need to add a new dimension to password
strength enforcement.

● Rules like minimum length, minimum character sets
required, no dictionary words, etc are still needed.

● But we also need a way to prevent users from
gravitating towards the same password patterns
(topologies) and overusing them.

Defenses Need to Evolve

34

What are some ways we could use this knowledge to
level the playing field?

● Blacklist the most common, predictable topologies.

● Don't allow multiple users to stack up on the same
topology – force them to spread out. “Wear-Level”
them across the possible topology space.

● Require a minimum topology change between old
and new passwords.

The primary cost of these is keyspace reduction.

Topology-Related Defenses

35

PathWell: Password Topology Histogram
Wear-Leveling

36

User-Selected Topologies:
48% of passwords in top 5 buckets

Wear-Leveled Topologies:
~1 password per bucket

How much does topology wear-leveling increase the attacker's
work-factor?

● Attacker's work-factor thought of as “work needed to get
the same percentage of cracks” or “cracks for the same
work.”

● Best-case (fully random topologies): 6 orders of magnitude
more work (one million times as long to get the same
number of cracks, or one millionth as many cracks in the same
time spent).

● Worst-case (attacker knows and goes after only those
topologies in use): 2-3 orders of magnitude more work.

● Realistic case (topologies not fully random, attacker makes
educated guesses): 4-5 orders of magnitude more work.

Topology Wear-Leveling Effectiveness

37

● Without wear-leveling, a user with password
'Kw#46_Ya' is most likely to set their next password
to (say) 'Kw#47_Ya'

● Likewise, with wear-leveling, that user would likely
chose 'Kw#46_YA' – the smallest allowable topology
change.

● So: the attacker who knows what a user's password
topology was in the past, should search the
topologies that are “nearest” to it.

● The KoreLogicRulesReplaceNumbers ruleset published
back in 2010 can easily crack these variations.

Minimum Topology Change

38

● "...[T]he Levenshtein distance is a string metric for
measuring the difference between two sequences.
Informally, the Levenshtein distance between two words is
the minimum number of single-character edits (insertion,
deletion, substitution) required to change one word into
the other.”

● http://en.wikipedia.org/wiki/Levenshtein_distance
● Michael Scott

● Sometimes also referred to as “edit distance.”

● kitten → mitten = 1
● abounds → abounded = 2
● dessert → desert = 1

Measuring Topology Change:
Levenshtein Distance

39

For our examples earlier:

● Kw#46_Ya → Kw#47_Ya
ulsddsul → ulsddsul = Lev distance 0

● Kw#46_Ya → Kw#46_YA
ulsddsul → ulsddsuu = 1

● P4ssword13! → P4sswords13!
udlllllldds → udllllllldds = 1

● P4ssword13! → P@ssword123
udlllllldds → usllllllddd = 2

Measuring Topology Change:
Levenshtein Distance

40

Don't blacklisting and topology wear-leveling reduce
the keyspace that an attacker would have to test for
valid passwords?

How much does this keyspace reduction help the
attacker?

Cost of Topology-Related Defense:
Keyspace Reduction

41

● Blacklisting: For 8-character, 4-charset passwords,
there are 4^8, or 65,536 topologies. 100 of them is less
than 0.2% of the keyspace. That is a trivial cost and we
should gladly pay it. (The cost drops for longer
passwords, too.)

● Forcing unique topology use: has the downside that
the odds that any one randomly selected topology will
contain a password go up.

● This effect is worse for larger user populations.

● However, this is vanishingly small compared to the cost
of, say, 5-10% of all users using a single topology that
the attacker can easily guess.

Cost of Topology-Related Defense:
Keyspace Reduction

42

Developed a PAM module that implements (all optional,
administrator-controlled):

● Auditing

● Blacklisting

● Maximum use-count

● Minimum Levenshtein distance

Developed and tested on multiple Linux distributions; not
yet tested on any other OS's with PAM support.

PathWell

43

Audit mode:

● Each time a password is changed, increment a counter
for that password's topology.

● Usage counters are not decremented when a password is
changed (history lasts forever).

● Useful “standalone” (without enforcement) in order to
quantify the problem in a given enterprise.

● Historical data is used by use-count enforcement.

● This DB is sensitive! An attacker who captures it gets
some nice hints.

● Current implementation can track topologies up to 29
characters long.

PathWell Audit Mode

44

Enforcement mode option: blacklisting

● Do not allow any user to set a password that uses a
known-overused topology.

● We compiled a list of the topologies that we see recur
between different enterprise networks.

● Administrators can replace or augment our default list
with their own (enabling audit mode can help build up a
local, organization-specific list).

● Can also be used to enforce minimum-complexity
requirements (blacklist all topologies that do not use 4 of
4 character classes, etc).

PathWell Enforcement Mode

45

● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices,
they will probably make similar choices about what to
switch to instead.

● We call that herding, and it is bad... in the long run,
attackers just need to learn and adapt to the next-top-
100 topologies and start over.

● Instead, we want mechanisms to not herd users in a
group, but rather, shoo them and disperse them more
widely across the possible topology space.

PathWell Enforcement Mode

46

● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices,
they will probably make similar choices about what to
switch to instead.

● We call that herding, and it is bad... in the long run,
attackers just need to learn and adapt to the next-top-
100 topologies and start over.

● Instead, we want mechanisms to not herd users in a
group, but rather, shoo them and disperse them more
widely across the possible topology space.

● ...But it is better than nothing. You don't have to run
faster than the bear...

PathWell Enforcement Mode

47

Enforcement mode option: maxuse

● Requires that Audit Mode is enabled.

● Set the maximum number of passwords that can
use any given topology.

● Typically set to 1 (each password must use a unique
topology... until exhaustion/rollover and admins
increment it to 2, etc).

● If maxuse=1, then an attacker who bruteforces a
topology will score at most one plaintext.

PathWell Enforcement Mode

48

Enforcement mode option: minlev
● PathWell's minlev enforcement compares a user's old

password's topology to the requested new one.
● minlev=1: new password's topology must not be the

same as the old. For a 10-char password, there are
30 topologies of the same length of Lev distance 1 for
the attacker to target.

● minlev=2: new topology must be at least two changes
away from the old. For a 10-char password, there are
405 possible 10-char topologies that are 2 Lev
distance away (and more if the length is changed).

● This does not need audit mode to be enabled.

PathWell Enforcement Mode

49

Will users revolt?
● Any new control that adds work for them will be

resisted.
● Could be mitigated by user-hinting and training

(which have their own costs).
● We need some test beds to figure out things like:

● How many tries does it take the average user to
succeed in creating a new password?

● Which combination of options (blacklist, minlev,
etc) provides the most security for the least user
burden?

● Any volunteers?

User Reception

50

Pretty math is one thing; how about a real test?

● Crack Me If You Can 2013 included some PathWell-related
experiments.

● “Company1” - “Company5”: non-PathWell-related collections
of password hashes (~85% of the total contest hashes).

● “Company6”: ~10k hashes following the merged distribution
from our 8 enterprise samples (a baseline control).

● “Company7”: Wear-Leveled but no blacklisting. ~10k unique
topologies used once each-starting with the most popular
and radiating outward.

● “Company8”: Wear-Leveled using randomly distributed
topologies.

CMIYC Experiment

51

These were then used for different hash types:

Note: We know that 9 char is still fatally short for NTLMs and
unsalted SHA1 – we used them to keep the contest engaging.

CMIYC Experiment

52

Length Hash Type % of Length-N

8 UNIX DES crypt 50

8 Salted Sha1 ({SSHA}) 25

8 FreeBSD MD5 (1) 25

9+ NTLM (NT MD4) 75

9+ Unsalted Sha1 ({SHA}) 25

“What the hell was Company8 doing?
 We can't crack any of them!”

CMIYC Experiment Results

53

Pro class teams' merged unique cracks

Street class teams' merged unique cracks

CMIYC Experiment Results

54

Hash Type Company6 (control) Company7 (unique,
predictable)

Company8 (unique,
random)

NTLM 1368 101 7

NSLDAP (SHA1) 181 8 0

UNIX DES 30 1 0

Salted SHA1 9 1 0

FreeBSD MD5 2 0 0

Hash Type Company6 Company7 Company8

NTLM 648 53 0

NSLDAP (SHA1) 209 0 0

UNIX DES 9 1 0

Salted SHA1 2 0 0

FreeBSD MD5 0 0 0

My Background

Classic Password Cracking

Classic Defenses

Recent Trends

PathWell

Examples

Next Steps

Agenda

55

Example /etc/pam.d settings:
● Default:

password required pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password required pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password optional pam_permit.so

● Audit mode:
password required pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password required pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password optional pam_pathwell.so mode=monitor use_authtok
password optional pam_permit.so

● Blacklist mode:
password required pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password required pam_pathwell.so mode=enforce use_authtok blacklist
password required pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password optional pam_permit.so

● Maxuse mode:
password required pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password required pam_pathwell.so mode=enforce use_authtok maxuse=1
password required pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password optional pam_pathwell.so mode=monitor use_authtok
password optional pam_permit.so

● Minlev mode:
password required pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password required pam_pathwell.so mode=enforce use_authtok minlev=2
password required pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password optional pam_permit.so

Example Configurations

56

● Some example errors from various enforcement modes
(syslogged, not visible to the user):
Nov 13 22:36:50 foo passwd[12416]: pam_pathwell(passwd:chauthtok):
Release='0.6.0'; Library='1:0:0'; Module='0:1:0';
PamFlags='0x00002000'; Mode='enforce'; User='testuser'; Error='The
topology associated with the chosen password has been
blacklisted.';

Nov 13 22:37:06 foo passwd[12418]: pam_pathwell(passwd:chauthtok):
Release='0.6.0'; Library='1:0:0'; Module='0:1:0';
PamFlags='0x00002000'; Mode='enforce'; User='testuser'; Error='The
topology associated with the chosen password would exceed the
maximum allowed use count.';

● Nov 13 22:37:45 foo passwd[12420]: pam_pathwell(passwd:chauthtok):
Release='0.6.0'; Library='1:0:0'; Module='0:1:0';
PamFlags='0x00002000'; Mode='enforce'; User='testuser'; Error='The
topology associated with the chosen password does not meet the
minimum required Lev distance.';

Example Error Messages

57

My Background

Classic Password Cracking

Classic Defenses

Recent Trends

PathWell

Examples

Next Steps

Agenda

58

● Need to test / gather data with real users

● Audit mode: does our current list of the worst topologies
hold up for other user populations?

● When the different enforcement modes are enabled, how
many tries does it take the user to successfully set a new
password?

● Study user hinting options.

● Doing a usability study this summer.

● Again, any volunteers to do a pilot deployment?

PathWell: Next Steps for the Project

59

● Open source the current PAM implementation – later
this summer (granting a license for our pending
patent).

● Support for enterprise environments

● Windows Active Directory!

● Enterprise LDAP platforms

● Other UNIX (Non-Linux) PAM systems

● Large web applications / websites?

● NIS

● Non-password applications? PINs?

PathWell: Next Steps for the Code

60

How will attackers – cracking tools, techniques –
adjust and adapt to PathWell?

PathWell: Next Steps for Attackers?

61

Questions?

Hank Leininger <hlein@korelogic.com>
D24D 2C2A F3AC B9AE CD03 B506 2D57 32E1 686B 6DB3

PathWell Project <pathwell-project@korelogic.com>
42E7 8319 21F3 01C8 2D72 A591 35EA 3CC7 502D 942F

Thanks to:
Klayton Monroe Sean Segreti
Shawn Wilson Mick Wollman
BITSys DARPA!
CMIYC Teams Hashcat / JTR

That's all folks

62

mailto:hlein@korelogic.com
mailto:pathwell-project@korelogic.com

● https://blog.korelogic.com/ ← will post links to this talk soon

● @CrackMeIfYouCan on Twitter

● CMIYC contest sites; past years have teams' writeups:
● http://contest-2014.korelogic.com/
● http://contest-2013.korelogic.com/
● http://contest-2012.korelogic.com/
● http://contest-2011.korelogic.com/
● http://contest-2010.korelogic.com/

● My coworker Rick Redman has given a number of talks about advanced
password cracking techniques:
● Passwords13: http://www.youtube.com/watch?v=5i_Im6JntPQ
● ISSA: http://infosec-summit.issa-balt.org/html/2010_agenda.html

Rick goes into detail about advanced cracking techniques, various rules
we've written for different tools & how to write your own.

● An interesting study about studying password selection: “On The
Ecological Validity of a Password Study”:
http://cups.cs.cmu.edu/soups/2013/proceedings/a13_Fahl.pdf

Other Reading

63

https://blog.korelogic.com/
http://contest-2014.korelogic.com/
http://contest-2013.korelogic.com/
http://contest-2012.korelogic.com/
http://contest-2011.korelogic.com/
http://contest-2010.korelogic.com/
http://www.youtube.com/watch?v=5i_Im6JntPQ
http://infosec-summit.issa-balt.org/html/2010_agenda.html
http://cups.cs.cmu.edu/soups/2013/proceedings/a13_Fahl.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

