
PathWell: Password Topology
Histogram Wear-Leveling

May 2017
Rocky Mountain Information Security Conference

Hank Leininger – KoreLogic

https://www.korelogic.com/

My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo

Next Steps

Agenda

2

Hank Leininger <hlein@korelogic.com>
5F6D DCC8 FF53 8093 EC39 127B 091E 7F7C E898 E86C

Played defense as a sysadmin / security admin since the mid 90's.

Wrote some Linux kernel hardening patches in the late 90’s that later
became part of GRSecurity.

Have been doing security consulting since 2000; co-founded KoreLogic in
2004.

We created the Crack Me If You Can contest at DEFCON; 2015 was its 6th
year running.

I also run the MARC mailing list archive site: https://marc.info/

My Background

3

mailto:hlein@korelogic.com

● I had the ideas for the following analysis, and the
enforcement approach described later, in late 2010 or so.

● In 2013 we won a DARPA Cyber FastTrack contract to flesh
out the research, design, and build a proof of concept.

● My coworkers did most of the actual work developing the
PathWell PoC.

PathWell Background

4

My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo

Next Steps

Agenda

5

Offline cracking

Classic Password Cracking

6

Offline cracking:

● Naive bruteforce (impractical)

● Wordlists

● Mangling rules

Classic Password Cracking

7

Offline cracking:

● Naive bruteforce (impractical)

● Wordlists

● Mangling rules

Popular classic tools: Crack, L0phtCrack, John the Ripper

Classic Password Cracking

8

● Password complexity rules

● Minimum length

● Character classes

● Password rotation

● History retention

● Better hash types (rarely implemented)

Classic Defenses

9

My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo

Next Steps

Agenda

10

Today the deck is stacked in the attackers' favor.

● Enterprise software vendors haven't moved to stronger hash
types.

● Moore's law has helped attackers tremendously.

● Existing defenses (password policies) have lead to
exploitable predictability.

● Systems with design flaws are vulnerable to pass-the-hash
attacks, which can make password cracking unnecessary.

Recent Trends:
Attacker Advantage

11

● Legacy systems mean we are still using hash types we have known
were too weak for many years now.

● UNIX DES was replaced with better things in free UNIXes since the
90's, but it's only fairly recently that commercial UNIXes have gotten
better options.

● NTLM, the strongest hash type offered by the latest Microsoft products,
was too weak to use even when it was new in 1993.

● {SSHA}, single-round salted SHA-1, is the best offered by many
enterprise LDAP directories.

● GPU power has made selective brute-forcing practical for these weak
hashes, even for quite long password lengths.

Recent Trends:
Attacker Advantage

12

Password Policies create new exploitable predictability:

● Complexity rules result in users choosing and placing their uppers,
lowers, numbers, and specials in predictable ways:

● Capitalize the first letter(s) of words (WeakSauce)
● Numbers likely to be at the end, and to be a year (WeakSauce2017)
● Add specials to the end (WeakSauce2017!)
● Predictable character choice - '!' is the most common special

character by a huge margin

● Password rotation results in users simply modifying their old passwords
in predictable ways:

● “Oct0b3r!” → “N0v3mb3r!”
● “Winter2016!” → “Spring2017!”
● “qWErt78()” → “wERty89)_”

Recent Trends:
Attacker Advantage

13

For about $2,000 you could build a machine with two NVidia 1080
Ti GPUs.

Each GPU can try over 64,000,000,000 candidate plaintexts per
second against a list of NTLM hashes, which means about 128
billion per second for the system.

That machine could try all possible 8-character NTLM passwords
using printable ASCII (95^8) in 14 hours.

But as you add length, the time gets longer quickly:
● 9 characters: 57 days (or less than 3 days for 20 machines!)
● 10 characters: 15 years
● 11 characters: 1,400+ years
● 15 characters: 114 billion years

Naive Brute Force

14

● Rather than testing all possible passwords, pick some specific
subsets, or patterns, and try all passwords that fit that pattern
(“topology”).

● For instance, "P4ssword17!", "N0vember24@",
"B7onchos99#" all use the same pattern: Uppercase,
number, 6 lowercase, 2 numbers, special.

● We will use the same notation as the Hashcat tools:
● 'u' to represent "any uppercase letter"
● 'l' for "lowercase letter"
● 'd' for "digit"
● 's' for "special" (punctuation)

● The above example is then “?u?d?l?l?l?l?l?l?d?d?s”, or just
“udlllllldds” for short.

Selective Brute Force – Password Patterns

15

● u, l, d, s = four possible character sets per password character.
● 8 character password: 4^8, or 65,536 possible topologies
● 9 character: 4^9 = 262,144
● 10 character: 4^10 = 1,048,576
● 11 character: 4^11 = 4,194,304

● The 11-character topology udlllllldds has 265 trillion possible
passwords (A0aaaaaa00! - Z9zzzzzz99~):
● 26 * 10 * 26^6 * 10^2 * 33 = 265,049,735,808,000

● Our example cracking machine, which would take 1,400 years
to exhaust the entire 11-character space, could bruteforce that
one topology in just 35 minutes.

Selective Brute Force – Password Patterns

16

● The question then is: do users bias towards certain common
password topologies?

● If you can guess which patterns users have over-used, you can
effectively bruteforce just those topologies, and crack a
disproportionate number of passwords.

● In reality you would likely combine that with wordlists, mangling
rules, and character frequencies to further optimize your attack.

● We crack passwords for penetration tests or for organizations’ audit
teams, as part of our Password Recovery Service, all the time.

● So we analyzed the passwords we had cracked from several
different enterprises, looking for frequently used topologies.

Predictable Password Topologies

17

● The question then is: do users bias towards certain common
password topologies? [Spoiler: OMG YES THEY DO.]

● If you can guess which patterns users have over-used, you can
effectively bruteforce just those topologies, and crack a
disproportionate number of passwords.

● In reality you would likely combine that with wordlists, mangling
rules, and character frequencies to further optimize your attack.

● We crack passwords for penetration tests or for organizations’ audit
teams, as part of our Password Recovery Service, all the time.

● So we analyzed the passwords we had cracked from several
different enterprises, looking for frequently used topologies.

Predictable Password Topologies

18

● 263,356 of 263,888 NTLM logins cracked (including histories) – over
99%

● 7,308 unique topologies found

Sample Organization #1:
Fortune 100 Company

19

● 263,356 of 263,888 NTLM logins cracked (including histories) – over
99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character)
● 33,394 ulllllldd (9 character)
● 27,898 ullldddd
● 19,190 ullllllldd
● 13,204 ulllldddd

Sample Organization #1:
Fortune 100 Company

20

● 263,356 of 263,888 NTLM logins cracked (including histories) – over
99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

Sample Organization #1:
Fortune 100 Company

21

● 263,356 of 263,888 NTLM logins cracked (including histories) – over
99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

● The top 5 patterns are used by a total of 48% of all users.
● The top 100 patterns are used by a total of 85% of all users.
● 99.9% of passwords meet their complexity requirements

● They had recently increased their min length to 9.
● Some history entries still had 8-char passwords.
● Look at how similar the top 8-char topologies are to the top 9-char ones! They

just added one lowercase letter (used a longer word).

Sample Organization #1:
Fortune 100 Company

22

Sample Organization #1:
Fortune 100 Company

23

● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

Sample Organization #2:
Fortune 500 Company

24

● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character)
● 17,914 ullllldds (9 character)
● 14,025 ulldddds
● 12,477 ulllllds
● 9,216 ullsdddd

Sample Organization #2:
Fortune 500 Company

25

● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

Sample Organization #2:
Fortune 500 Company

26

● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

● Top 5 topologies crack 16% of all passwords.

● The top 100 topologies are used by a total of 62% of all users.

● They too had recently strengthened their requirements – longer
minimum and required a special.

Sample Organization #2:
Fortune 500 Company

27

Sample Organization #2:
Fortune 500 Company

28

We analyzed the password topologies used in 8 different
enterprises of 4,000 or more logins where we had cracked
more than 90% of all password hashes.

We found that they had many popular topologies in
common.

Similarities Across Organizations

29

Similarities Across Organizations

30

This data confirmed things we had long observed anecdotally:

● Users will pick the lowest-common-denominator that will be allowed
by policies.

● When required to use 3 of 4 character classes, the most popular is:
one upper, then several lowers, then 2-4 digits.

● If required to use 4 of 4 charsets, users just add a special to the end.
 (And most often that special character is '!')

● If the minimum length increases, users are most likely to just use a
longer base word, adding a lowercase letter.

● User behavior trends apply across organizations.

Things the Data Told Us

31

This data confirmed things we had long observed anecdotally:

● Users will pick the lowest-common-denominator that will be allowed
by policies.

● When required to use 3 of 4 character classes, the most popular is:
one upper, then several lowers, then 2-4 digits.

● If required to use 4 of 4 charsets, users just add a special to the end.
 (And most often that special character is '!')

● If the minimum length increases, users are most likely to just use a
longer base word, adding a lowercase letter.

● User behavior trends apply across organizations.

Bottom line: Complexity rules don't help as much as enterprises
think they do.

Things the Data Told Us

32

How about 15-character passwords with minimum 2 uppercase, 2
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions

of years. It is tempting to think that they “can't be cracked”.

How about harder passwords?

33

How about 15-character passwords with minimum 2 uppercase, 2
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions

of years. It is tempting to think that they “can't be cracked”.
● But what if the attacker targets popular topologies?

● I would guess one of the top-5 patterns would be two words, first
letters capitalized, separated by a special, with some numbers
and another special at the end:
● Kore.Rules2017! (ulllsulllldddds, 5.9 x 10^19 possibilities)

How about harder passwords?

34

How about 15-character passwords with minimum 2 uppercase, 2
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions

of years. It is tempting to think that they “can't be cracked”.
● But what if the attacker targets popular topologies?

● I would guess one of the top-5 patterns would be two words, first
letters capitalized, separated by a special, with some numbers
and another special at the end:
● Kore.Rules2017! (ulllsulllldddds, 5.9 x 10^19 possibilities)

● That topology would take 15 compute-years to exhaust.
● Or, 1% every 53 days.

How about harder passwords?

35

How about 15-character passwords with minimum 2 uppercase, 2
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions

of years. It is tempting to think that they “can't be cracked”.
● But what if the attacker targets popular topologies?

● I would guess one of the top-5 patterns would be two words, first
letters capitalized, separated by a special, with some numbers
and another special at the end:
● Kore.Rules2017! (ulllsulllldddds, 5.9 x 10^19 possibilities)

● That topology would take 15 compute-years to exhaust.
● Or, 1% every 53 days.

● For 100,000 users with 9 history records, even if only 1% use
this pattern, you will average cracking one password every
13 hours.

How about harder passwords?

36

My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo

Next Steps

Agenda

37

● We need to add a new dimension to password strength
enforcement.

● Rules like minimum length, minimum character sets required,
no dictionary words, etc are still needed.

● But we also need a way to prevent users from gravitating
towards the same password patterns (topologies) and
overusing them.

Defenses Need to Evolve

38

What are some ways we could use this knowledge to take
away this attacker advantage?

● Blacklist the most common, predictable topologies.

● Require a minimum topology change between old and
new passwords.

● Don't allow multiple users to stack up on the same topology
– force them to spread out. “Wear-Level” them across the
possible topology space.

Topology-Related Defenses

39

What are some ways we could use this knowledge to take
away this attacker advantage?

● Blacklist the most common, predictable topologies.

● Require a minimum topology change between old and
new passwords.

● Don't allow multiple users to stack up on the same topology
– force them to spread out. “Wear-Level” them across the
possible topology space.

The primary costs of these are keyspace reduction, and user
rebellion.

Topology-Related Defenses

40

PathWell: Topology Blacklisting

41

● Identify the worst (most common) topologies, and do not let any users set
passwords that use them.

● The top-5 lists I showed earlier are a good start.

● We further data-mined our enterprise password cracks and built a longer
list. Find the list of the top 100 here:

● https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies

● Of course, these are also a good place to start if you are attempting to
crack corporate passwords!

● As with most things we figure out, we assume bad guys had already
worked this out for themselves.

PathWell: Topology Blacklisting

42

https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies

● Attackers used to taking a top-N approach, either standalone or in
combination with wordlist and other mangling-rule techniques, will
suddenly get zero cracks from their early efforts, instead of ~25% in
minutes.

● Attackers who figure out what’s being done will have to figure out what
users did when they weren’t allowed to use the same old same old.

● However, it is likely that user populations would still find some new
common topologies to converge on. The effectiveness of blacklist-only
will decay if it is the only, static, new defense.

PathWell: Blacklisting Effectiveness

43

PathWell: Minimum Topology Change

44

● Without wear-leveling, a user with password 'Kw#46_Ya' is
most likely to set their next password to (say) 'Kw#47_Ya'

● Likewise, with wear-leveling, that user would likely chose
'Kw#46_YA' – the smallest allowable topology change.

● So: the attacker who knows what a user's password topology
was in the past, should search the topologies that are
“nearest” to it.

● The KoreLogicRulesReplaceNumbers ruleset published back
in 2010 can easily crack these variations.

PathWell: Minimum Topology Change

45

Measuring Topology Change:
Levenshtein Distance

46

● "...[T]he Levenshtein distance is a string metric for measuring the
difference between two sequences. Informally, the Levenshtein
distance between two words is the minimum number of single-
character edits (insertion, deletion, substitution) required to change
one word into the other.”

● http://en.wikipedia.org/wiki/Levenshtein_distance
● Michael Scott

Measuring Topology Change:
Levenshtein Distance

47

● "...[T]he Levenshtein distance is a string metric for measuring the
difference between two sequences. Informally, the Levenshtein
distance between two words is the minimum number of single-
character edits (insertion, deletion, substitution) required to change
one word into the other.”

● http://en.wikipedia.org/wiki/Levenshtein_distance
● Michael Scott

● Sometimes also referred to as “edit distance.”

● kitten → mitten = 1
● abounds → abounded = 2
● dessert → desert = 1

Measuring Topology Change:
Levenshtein Distance

48

For our examples earlier:

● Kw#46_Ya → Kw#47_Ya
ulsddsul → ulsddsul = Lev distance 0

● Kw#46_Ya → Kw#46_YA
ulsddsul → ulsddsuu = 1

Measuring Topology Change:
Levenshtein Distance

49

For our examples earlier:

● Kw#46_Ya → Kw#47_Ya
ulsddsul → ulsddsul = Lev distance 0

● Kw#46_Ya → Kw#46_YA
ulsddsul → ulsddsuu = 1

● P4ssword17! → P4sswords17!
udlllllldds → udllllllldds = 1

● P4ssword17! → P@ssword18z
udlllllldds → usllllllddl = 2

Measuring Topology Change:
Levenshtein Distance

50

PathWell: Topology Histogram Wear-Leveling

51

PathWell: Topology Histogram Wear-Leveling

52

User-Selected Topologies:
48% of passwords in top 5 buckets

We want to turn this...

PathWell: Topology Histogram Wear-Leveling

53

Into this!

Wear-Leveled Topologies:
<= 1 password per bucket

PathWell: Topology Histogram Wear-Leveling

54

User-Selected Topologies:
48% of passwords in top 5 buckets

Wear-Leveled Topologies:
<= 1 password per bucket

How much does topology wear-leveling increase the attacker's work-
factor?

● Attacker's work-factor thought of as “work needed to get the same
percentage of cracks” or “cracks for the same work.”

● Best-case (fully random topologies): 6 orders of magnitude more
work (one million times as long to get the same number of cracks, or
one millionth as many cracks in the same time spent).

● Worst-case (attacker knows and goes after only those topologies in
use): 2-3 orders of magnitude more work.

● Realistic case (topologies not fully random, attacker makes educated
guesses): 4-5 orders of magnitude more work.

Topology Wear-Leveling Effectiveness

55

Don't blacklisting and topology wear-leveling reduce the
keyspace that an attacker would have to test for valid
passwords?

How much does this keyspace reduction help the attacker?

Cost of Topology-Related Defense:
Keyspace Reduction

56

● Blacklisting: For 8-character, 4-charset passwords, there are
4^8, or 65,536 topologies. 100 of them is less than 0.2% of the
keyspace. That is a trivial cost and we should gladly pay it. (The
percentage cost drops for longer passwords, too.)

Cost of Topology-Related Defense:
Keyspace Reduction

57

● Blacklisting: For 8-character, 4-charset passwords, there are
4^8, or 65,536 topologies. 100 of them is less than 0.2% of the
keyspace. That is a trivial cost and we should gladly pay it. (The
percentage cost drops for longer passwords, too.)

● Forcing unique topology use: has the downside that the odds
that any one randomly selected topology will contain a password
go up.

● This effect is worse for larger user populations.

● However, this is vanishingly small compared to the cost of, say,
5-10% of all users using a single topology that the attacker can
easily predict.

Cost of Topology-Related Defense:
Keyspace Reduction

58

Will users revolt?

Cost of Topology-Related Defense:
Mutiny?

59

Will users revolt?
● Any new control that adds work for them will be resisted.

● Could be mitigated by user-hinting and training (which have
their own costs).

● Need to figure out how users respond to new requirements,
and how to best explain them to minimize difficulty.

● What kind of hints can be provided to a user who tries a
password that is not strong enough?

Cost of Topology-Related Defense:
Mutiny?

60

Will users revolt?
● Any new control that adds work for them will be resisted.

● Could be mitigated by user-hinting and training (which have
their own costs).

● Need to figure out how users respond to new requirements,
and how to best explain them to minimize difficulty.

● What kind of hints can be provided to a user who tries a
password that is not strong enough?
● Hints to the user might be hints to attackers, too.

Cost of Topology-Related Defense:
Mutiny?

61

My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo

Next Steps

Agenda

62

We released a PAM module that implements (all optional,
administrator-controlled):

● Auditing

● Blacklisting

● Minimum Levenshtein distance

● Maximum use-count

● User hinting

PathWell PAM Module

63

● Developed and tested on multiple Linux distributions; not yet
tested on any other OS's with PAM support.

● Download the source code from
https://git.korelogic.com/libpathwell.git/
● PathWell techniques described here are patented.
● Released open-source under the AGPL.
● Following the code license grants a patent license.
● Basically, free if you aren’t directly making money from using it.
● If you want to make money from using it, talk to us ;)

● The PAM module is actually a fairly thin wrapper around calls to
the libpathwell library (also included). The library could be used
directly by LDAP servers, Java SSO implementations, etc.

PathWell PAM Module

64

https://git.korelogic.com/libpathwell.git/

Audit mode:

● Each time a password is changed, increment a counter for that
password's topology.

● Usage counters are not decremented when a password is changed
(history lasts forever, unless zapped by an admin).

● Useful “standalone” (without enforcement) in order to quantify the
problem in a given enterprise.

● Historical data is used by use-count enforcement.

● This DB is sensitive! An attacker who captures it gets some nice hints.

● Current implementation can track topologies up to 29 characters long.

PathWell Audit Mode

65

There are several Enforcement mode options, so that
features can be enabled and configured independently.

PathWell Enforcement Mode

66

Enforcement mode option: blacklisting

● Do not allow any user to set a password that uses a known-
overused topology.

● We include that list of common topologies I mentioned earlier.

● Administrators can replace or augment our default list with their
own (enabling audit mode can help build up a local, organization-
specific list).

● Can also be used to enforce minimum-complexity requirements
(blacklist all topologies that do not use 4 of 4 character classes,
etc).

PathWell Enforcement Mode: blacklist

67

● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices, they
will probably make similar choices about what to switch to
instead.

● We call that herding, and it is bad... in the long run, attackers
just need to learn and adapt to the next-top-100 topologies and
start over.

● Instead, we want mechanisms to not herd users in a group, but
rather, shoo them and disperse them more widely across the
possible topology space.

PathWell Enforcement Mode: blacklist

68

● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices, they
will probably make similar choices about what to switch to
instead.

● We call that herding, and it is bad... in the long run, attackers
just need to learn and adapt to the next-top-100 topologies and
start over.

● Instead, we want mechanisms to not herd users in a group, but
rather, shoo them and disperse them more widely across the
possible topology space.

● ...But it is better than nothing. You don't have to run faster than
the bear...

PathWell Enforcement Mode: blacklist

69

Enforcement mode option: minlev
● PathWell's minlev enforcement compares a user's old

password's topology to the requested new one.
● minlev=1: new password's topology must not be the same as

the old. For a 10-char password, there are 30 topologies of
the same length of Lev distance 1 for the attacker to target.

● minlev=2: new topology must be at least two changes away
from the old. For a 10-char password, there are 405 possible
10-char topologies that are 2 Lev distance away (and more if
the length is changed).

● This does not need audit mode to be enabled.

PathWell Enforcement Mode: minlev

70

Enforcement mode option: maxuse

● Requires that Audit Mode is enabled, because it needs to
track things over time.

● Sets the maximum number of passwords that can use any
given topology.

● Typically set to 1 (each password must use a unique
topology... until exhaustion/rollover and admins increment it
to 2, etc).

● If maxuse=1, then an attacker who bruteforces a topology
will score at most one plaintext.

PathWell Enforcement Mode: maxuse

71

Enforcement mode option: hintinfolevel
● Out of the box, the user gets no details about why a too-weak

password was refused.
● In the latest release of libpathwell we added multiple admin-

tunable levels of user hinting, from nothing, to generic “try
adding an uppercase letter as the fourth character and
changing the last character to a number” to “You tried
‘Kw#46_Ya’, how about ‘Kw#G46_Y7’ instead?”

PathWell Enforcement Mode: hintinfolevel

72

Enforcement mode option: hintinfolevel
● Out of the box, the user gets no details about why a too-weak

password was refused.
● In the latest release of libpathwell we added multiple admin-

tunable levels of user hinting, from nothing, to generic “try
adding an uppercase letter as the fourth character and
changing the last character to a number” to “You tried
‘Kw#46_Ya’, how about ‘Kw#G46_Y7’ instead?”

● Choose carefully! Higher hint levels not appropriate for all
environments, such as if shoulder surfing is likely, etc.

● These are supported by the API, so other things besides
PAM modules could make use of them.

● Note: the hint engine is only hooked up for blacklist violations
so far.

PathWell Enforcement Mode: hintinfolevel

73

My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo?

Next Steps

Agenda

74

Example /etc/pam.d settings:
● Default:

password required pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password required pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password optional pam_permit.so

● Audit mode adds:
password optional pam_pathwell.so mode=monitor use_authtok

● Blacklist mode adds:
password required pam_pathwell.so mode=enforce use_authtok blacklist

● Minlev mode adds:
password required pam_pathwell.so mode=enforce use_authtok minlev=2

● Maxuse mode adds:
password required pam_pathwell.so mode=enforce use_authtok maxuse=1
password optional pam_pathwell.so mode=monitor use_authtok

● Enabling the hint engine:
password required pam_pathwell.so mode=enforce use_authtok blacklist hintinfolevel=2

Full examples are included in README.PAM in the source code distribution.

Not A Demo (Canned Examples)

75

● Successful password change user output:
patsy@marklar ~ $ passwd
Changing password for patsy.
Current password:
New password: Kw#46_Ya
Retype new password: Kw#46_Ya
passwd: password updated successfully

● Successful password change syslog message:

Apr 25 14:12:44 marklar passwd[27103]:
 pam_pathwell(passwd:chauthtok): Release='0.7.0'; Library='2:0:0';
 Module='0:3:0'; PamFlags='0x00002000'; Mode='enforce';
 User='patsy'; Status='pass'; Reason='Password accepted.';

Example Logs & Output: Success

76

● Failed (minlev=2 violation):
patsy@marklar ~ $ passwd
Changing password for patsy.
Current password: Kw#46_Ya
New password: Kw#47_Y4
Retype new password: Kw#47_Y4
pam_pathwell: The new password failed the minlev check.
passwd: Authentication token manipulation error
passwd: password unchanged

● Failed password change syslog messages:

Apr 25 14:14:16 marklar passwd[27121]:
 pam_pathwell(passwd:chauthtok): Release='0.7.0'; Library='2:0:0';
 Module='0:3:0'; PamFlags='0x00002000'; Mode='enforce';
 User='patsy'; Status='fail'; Reason='Password rejected.';

Example Logs & Output: Minlev

77

● Failed (maxuse=1 violation, minlev not enabled):
patsy@marklar ~ $ passwd
Changing password for patsy.
Current password: Kw#46_Ya
New password: Le$57+Us
Retype new password: Le$57+Us
pam_pathwell: The new password failed the maxuse check.
passwd: Authentication token manipulation error
passwd: password unchanged

● Failed password change syslog messages:

Apr 25 14:21:18 marklar passwd[27455]:
 pam_pathwell(passwd:chauthtok): Release='0.7.0'; Library='2:0:0';
 Module='0:3:0'; PamFlags='0x00002000'; Mode='enforce';
 User='patsy'; Status='fail'; Reason='Password rejected.';

Example Logs & Output: Maxuse

78

● Blacklist failure with hintinfolevel=2:

 patsy@marklar ~ $ passwd
 Changing password for patsy.
 Current password:
 New password: April2017!
 Retype new password: April2017!
 pam_pathwell:
 ullllddd ds
 |
 insert a digit ---------------------------------+

 This should produce the following topology: ullllddddds

 passwd: Authentication token manipulation error
 passwd: password unchanged

Example Logs & Output: Blacklist Hinting

79

● Blacklist failure with hintinfolevel=3:

 patsy@marklar ~ $ passwd
 Changing password for patsy.
 Current password:
 New password: April2017!
 Retype new password: April2017!
 pam_pathwell:
 April2017!
 | |
 replace with a lower case character ------------+ |
 |
 insert a digit -----------------------------------+

 This should produce the following topology: ulllldlddsd

 passwd: Authentication token manipulation error
 passwd: password unchanged

(Reminder: hintinfolevels greater than 2 are not appropriate for
most corporate environments.)

Example Logs & Output: Blacklist Hinting

80

● Blacklist failure with hintinfolevel=4:

 patsy@marklar ~ $ passwd
 Changing password for patsy.
 Current password:
 New password: April2017!
 Retype new password: April2017!
 pam_pathwell:
 A pril2017!
 ||
 replace with '7' -----+|
 |
 insert a ',' --------+

 This should produce the following password: 7,pril2017!

 passwd: Authentication token manipulation error
 passwd: password unchanged

(Reminder: hintinfolevels greater than 2 are not appropriate for
most corporate environments.)

Example Logs & Output: Blacklist Hinting

81

My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo

Next Steps

Agenda

82

● More hints!
● Implement the hint engine for other modes – minlev, maxuse.

PathWell: Next Steps for the Project

83

● More hints!
● Implement the hint engine for other modes – minlev, maxuse.

● More platforms!
● We have an Active Directory version in the works.

● Has some trade-offs for data storage, user interface, etc.
● We do not use Windows in production, so don’t have a good

environment for long-term testing/support.
● Currently talking to some of our clients we do password audits for

about being pilot sites.
● Anybody want to volunteer?

PathWell: Next Steps for the Project

84

● More hints!
● Implement the hint engine for other modes – minlev, maxuse.

● More platforms!
● We have an Active Directory version in the works.

● Has some trade-offs for data storage, user interface, etc.
● We do not use Windows in production, so don’t have a good

environment for long-term testing/support.
● Currently talking to some of our clients we do password audits for

about being pilot sites.
● Anybody want to volunteer?

● Other platforms that don’t have PAM support?
● Very large websites, SSO platforms, LDAP servers, etc.?

PathWell: Next Steps for the Project

85

● More hints!
● Implement the hint engine for other modes – minlev, maxuse.

● More platforms!
● We have an Active Directory version in the works.

● Has some trade-offs for data storage, user interface, etc.
● We do not use Windows in production, so don’t have a good

environment for long-term testing/support.
● Currently talking to some of our clients we do password audits for

about being pilot sites.
● Anybody want to volunteer?

● Other platforms that don’t have PAM support?
● Very large websites, SSO platforms, LDAP servers, etc.?

● More enforcement options!
● Regular expression-based blacklisting should be easy to add.

[Dd].?[Ee].?[Nn].?[Vv].?[Ee].?[Rr]

PathWell: Next Steps for the Project

86

How will attackers – cracking tools, techniques – adjust and
adapt to PathWell?

PathWell: Next Steps for Attackers?

87

Questions?

Hank Leininger <hlein@korelogic.com>
5F6D DCC8 FF53 8093 EC39 127B 091E 7F7C E898 E86C

PathWell Project <pathwell-project@korelogic.com>
9CCF 2BA6 4444 E8AA 36D5 315B 2ECC 5A37 25B2 CC97

Thanks to:
Klayton Monroe Sean Segreti
Shawn Wilson Mick Wollman
BITSys DARPA!
CMIYC Teams Hashcat / JTR

That's all folks

88

mailto:hlein@korelogic.com
mailto:pathwell-project@korelogic.com

● https://blog.korelogic.com/ ← has links to various other talks

● https://git.korelogic.com/libpathwell.git/ ← get the library & PAM module code

● @CrackMeIfYouCan on Twitter

● CMIYC contest sites; past years have teams' writeups. Start at
http://contest.korelogic.com and follow links to each year.

● My coworker Rick Redman has given a number of talks about advanced
password cracking techniques:
● Passwords13: http://www.youtube.com/watch?v=5i_Im6JntPQ
● ISSA: http://infosec-summit.issa-balt.org/html/2010_agenda.html

Rick goes into detail about advanced cracking techniques, where to download
various rules we've written for different tools & how to write your own.

● An interesting study about studying password selection: “On The Ecological
Validity of a Password Study”:
http://cups.cs.cmu.edu/soups/2013/proceedings/a13_Fahl.pdf

Other Reading

89

https://blog.korelogic.com/
https://git.korelogic.com/libpathwell.git/
http://contest.korelogic.com/
http://www.youtube.com/watch?v=5i_Im6JntPQ
http://infosec-summit.issa-balt.org/html/2010_agenda.html
http://cups.cs.cmu.edu/soups/2013/proceedings/a13_Fahl.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

