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Hank Leininger <hlein@korelogic.com>
5F6D DCC8 FF53 8093 EC39  127B 091E 7F7C E898 E86C

Played defense as a sysadmin / security admin since the mid 90's.

Wrote some Linux kernel hardening patches in the late 90’s that later 
became part of GRSecurity.

Have been doing security consulting since 2000; co-founded KoreLogic in 
2004.

We created the Crack Me If You Can contest at DEFCON; 2015 was its 6th 
year running.

I also run the MARC mailing list archive site: https://marc.info/

My Background
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● I had the ideas for the following analysis, and the 
enforcement approach described later, in late 2010 or so.

● In 2013 we won a DARPA Cyber FastTrack contract to flesh 
out the research, design, and build a proof of concept.

● My coworkers did most of the actual work developing the 
PathWell PoC. 

PathWell Background

4



My Background

Classic Password Attacks and Defenses

Recent Password Cracking Trends

PathWell Concepts

PathWell Code

Demo

Next Steps

Agenda

5



Offline cracking

Classic Password Cracking
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Offline cracking:

● Naive bruteforce (impractical)

● Wordlists

● Mangling rules

Classic Password Cracking
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Offline cracking:

● Naive bruteforce (impractical)

● Wordlists

● Mangling rules

Popular classic tools: Crack, L0phtCrack, John the Ripper

Classic Password Cracking
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● Password complexity rules

● Minimum length

● Character classes

● Password rotation

● History retention

● Better hash types (rarely implemented)

Classic Defenses
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Today the deck is stacked in the attackers' favor.

● Enterprise software vendors haven't moved to stronger hash 
types.

● Moore's law has helped attackers tremendously.

● Existing defenses (password policies) have lead to 
exploitable predictability.

● Systems with design flaws are vulnerable to pass-the-hash 
attacks, which can make password cracking unnecessary.

Recent Trends:
Attacker Advantage
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● Legacy systems mean we are still using hash types we have known 
were too weak for many years now.

● UNIX DES was replaced with better things in free UNIXes since the 
90's, but it's only fairly recently that commercial UNIXes have gotten 
better options.

● NTLM, the strongest hash type offered by the latest Microsoft products, 
was too weak to use even when it was new in 1993.

● {SSHA}, single-round salted SHA-1, is the best offered by many 
enterprise LDAP directories.

● GPU power has made selective brute-forcing practical for these weak 
hashes, even for quite long password lengths.

Recent Trends:
Attacker Advantage
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Password Policies create new exploitable predictability:

● Complexity rules result in users choosing and placing their uppers, 
lowers, numbers, and specials in predictable ways:

● Capitalize the first letter(s) of words (WeakSauce)
● Numbers likely to be at the end, and to be a year (WeakSauce2017)
● Add specials to the end (WeakSauce2017!)
● Predictable character choice - '!' is the most common special 

character by a huge margin

● Password rotation results in users simply modifying their old passwords 
in predictable ways:

● “Oct0b3r!” → “N0v3mb3r!”
● “Winter2016!” → “Spring2017!”
● “qWErt78()” → “wERty89)_” 

Recent Trends:
Attacker Advantage
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For about $2,000 you could build a machine with two NVidia 1080 
Ti GPUs.

Each GPU can try over 64,000,000,000 candidate plaintexts per 
second against a list of NTLM hashes, which means about 128 
billion per second for the system.

That machine could try all possible 8-character NTLM passwords 
using printable ASCII (95^8) in 14 hours.

But as you add length, the time gets longer quickly:
● 9 characters: 57 days (or less than 3 days for 20 machines!)
● 10 characters: 15 years
● 11 characters: 1,400+ years
● 15 characters: 114 billion years

Naive Brute Force
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● Rather than testing all possible passwords, pick some specific 
subsets, or patterns, and try all passwords that fit that pattern 
(“topology”).

● For instance, "P4ssword17!", "N0vember24@", 
"B7onchos99#" all use the same pattern: Uppercase, 
number, 6 lowercase, 2 numbers, special.

● We will use the same notation as the Hashcat tools:
● 'u' to represent "any uppercase letter"
● 'l' for "lowercase letter"
● 'd' for "digit"
● 's' for "special" (punctuation)

● The above example is then “?u?d?l?l?l?l?l?l?d?d?s”, or just 
“udlllllldds” for short.

Selective Brute Force – Password Patterns
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● u, l, d, s = four possible character sets per password character.
● 8 character password: 4^8, or 65,536 possible topologies
● 9 character: 4^9 = 262,144
● 10 character: 4^10 = 1,048,576
● 11 character: 4^11 = 4,194,304

● The 11-character topology udlllllldds has 265 trillion possible 
passwords (A0aaaaaa00! - Z9zzzzzz99~):
● 26 * 10 * 26^6 * 10^2 * 33 = 265,049,735,808,000

● Our example cracking machine, which would take 1,400 years 
to exhaust the entire 11-character space, could bruteforce that 
one topology in just 35 minutes.

Selective Brute Force – Password Patterns
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● The question then is: do users bias towards certain common 
password topologies? 

● If you can guess which patterns users have over-used, you can 
effectively bruteforce just those topologies, and crack a 
disproportionate number of passwords.

● In reality you would likely combine that with wordlists, mangling 
rules, and character frequencies to further optimize your attack.

● We crack passwords for penetration tests or for organizations’ audit 
teams, as part of our Password Recovery Service, all the time.

● So we analyzed the passwords we had cracked from several 
different enterprises, looking for frequently used topologies.

Predictable Password Topologies
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● The question then is: do users bias towards certain common 
password topologies? [Spoiler: OMG YES THEY DO.]

● If you can guess which patterns users have over-used, you can 
effectively bruteforce just those topologies, and crack a 
disproportionate number of passwords.

● In reality you would likely combine that with wordlists, mangling 
rules, and character frequencies to further optimize your attack.

● We crack passwords for penetration tests or for organizations’ audit 
teams, as part of our Password Recovery Service, all the time.

● So we analyzed the passwords we had cracked from several 
different enterprises, looking for frequently used topologies.

Predictable Password Topologies
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● 263,356 of 263,888 NTLM logins cracked (including histories) – over 
99%

● 7,308 unique topologies found

Sample Organization #1:
Fortune 100 Company
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● 263,356 of 263,888 NTLM logins cracked (including histories) – over 
99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character)
● 33,394 ulllllldd (9 character)
● 27,898 ullldddd
● 19,190 ullllllldd
● 13,204 ulllldddd

Sample Organization #1:
Fortune 100 Company
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● 263,356 of 263,888 NTLM logins cracked (including histories) – over 
99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

Sample Organization #1:
Fortune 100 Company
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● 263,356 of 263,888 NTLM logins cracked (including histories) – over 
99%

● 7,308 unique topologies found
● Most popular topologies:

● 33,458 ullllldd (8 character) – 12.7%
● 33,394 ulllllldd (9 character) – 12.7%
● 27,898 ullldddd – 10.6%
● 19,190 ullllllldd – 7.3%
● 13,204 ulllldddd – 5.0%

● The top 5 patterns are used by a total of 48% of all users.
● The top 100 patterns are used by a total of 85% of all users.
● 99.9% of passwords meet their complexity requirements

● They had recently increased their min length to 9.
● Some history entries still had 8-char passwords.
● Look at how similar the top 8-char topologies are to the top 9-char ones!  They 

just added one lowercase letter (used a longer word).

Sample Organization #1:
Fortune 100 Company
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Sample Organization #1:
Fortune 100 Company
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● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

Sample Organization #2:
Fortune 500 Company
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● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character)
● 17,914 ullllldds (9 character)
● 14,025 ulldddds
● 12,477 ulllllds
● 9,216 ullsdddd

Sample Organization #2:
Fortune 500 Company
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● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

Sample Organization #2:
Fortune 500 Company
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● 419,287 of 449,192 NTLM logins cracked (including histories) – 93%

● 14,266 unique topologies found

● Most popular topologies:
● 19,200 ullllldd (8 character) – 4.3%
● 17,914 ullllldds (9 character) – 4.0%
● 14,025 ulldddds – 3.1%
● 12,477 ulllllds – 2.8%
● 9,216 ullsdddd – 2.1%

● Top 5 topologies crack 16% of all passwords.

● The top 100 topologies are used by a total of 62% of all users.

● They too had recently strengthened their requirements – longer 
minimum and required a special.

Sample Organization #2:
Fortune 500 Company
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Sample Organization #2:
Fortune 500 Company
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We analyzed the password topologies used in 8 different 
enterprises of 4,000 or more logins where we had cracked 
more than 90% of all password hashes.

We found that they had many popular topologies in 
common.

Similarities Across Organizations
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Similarities Across Organizations

30



This data confirmed things we had long observed anecdotally:

● Users will pick the lowest-common-denominator that will be allowed 
by policies.

● When required to use 3 of 4 character classes, the most popular is: 
one upper, then several lowers, then 2-4 digits.

● If required to use 4 of 4 charsets, users just add a special to the end. 
 (And most often that special character is '!')

● If the minimum length increases, users are most likely to just use a 
longer base word, adding a lowercase letter.

● User behavior trends apply across organizations.

Things the Data Told Us
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This data confirmed things we had long observed anecdotally:

● Users will pick the lowest-common-denominator that will be allowed 
by policies.

● When required to use 3 of 4 character classes, the most popular is: 
one upper, then several lowers, then 2-4 digits.

● If required to use 4 of 4 charsets, users just add a special to the end. 
 (And most often that special character is '!')

● If the minimum length increases, users are most likely to just use a 
longer base word, adding a lowercase letter.

● User behavior trends apply across organizations.

Bottom line: Complexity rules don't help as much as enterprises 
think they do.

Things the Data Told Us
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How about 15-character passwords with minimum 2 uppercase, 2 
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions 

of years.  It is tempting to think that they “can't be cracked”.

How about harder passwords?
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How about 15-character passwords with minimum 2 uppercase, 2 
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions 

of years.  It is tempting to think that they “can't be cracked”.
● But what if the attacker targets popular topologies?

● I would guess one of the top-5 patterns would be two words, first 
letters capitalized, separated by a special, with some numbers 
and another special at the end:
● Kore.Rules2017! (ulllsulllldddds, 5.9 x 10^19 possibilities)

How about harder passwords?
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How about 15-character passwords with minimum 2 uppercase, 2 
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions 

of years.  It is tempting to think that they “can't be cracked”.
● But what if the attacker targets popular topologies?

● I would guess one of the top-5 patterns would be two words, first 
letters capitalized, separated by a special, with some numbers 
and another special at the end:
● Kore.Rules2017! (ulllsulllldddds, 5.9 x 10^19 possibilities)

● That topology would take 15 compute-years to exhaust.
● Or, 1% every 53 days.

How about harder passwords?
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How about 15-character passwords with minimum 2 uppercase, 2 
lowercase, 2 digits, 2 specials?
● To brute-force the entire keyspace would take hundreds of billions 

of years.  It is tempting to think that they “can't be cracked”.
● But what if the attacker targets popular topologies?

● I would guess one of the top-5 patterns would be two words, first 
letters capitalized, separated by a special, with some numbers 
and another special at the end:
● Kore.Rules2017! (ulllsulllldddds, 5.9 x 10^19 possibilities)

● That topology would take 15 compute-years to exhaust.
● Or, 1% every 53 days.

● For 100,000 users with 9 history records, even if only 1% use 
this pattern, you will average cracking one password every 
13 hours.

How about harder passwords?
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● We need to add a new dimension to password strength 
enforcement.

● Rules like minimum length, minimum character sets required, 
no dictionary words, etc are still needed.

● But we also need a way to prevent users from gravitating 
towards the same password patterns (topologies) and 
overusing them.

Defenses Need to Evolve
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What are some ways we could use this knowledge to take 
away this attacker advantage?

● Blacklist the most common, predictable topologies.

● Require a minimum topology change between old and 
new passwords.

● Don't allow multiple users to stack up on the same topology 
– force them to spread out.  “Wear-Level” them across the 
possible topology space.

Topology-Related Defenses
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What are some ways we could use this knowledge to take 
away this attacker advantage?

● Blacklist the most common, predictable topologies.

● Require a minimum topology change between old and 
new passwords.

● Don't allow multiple users to stack up on the same topology 
– force them to spread out.  “Wear-Level” them across the 
possible topology space.

The primary costs of these are keyspace reduction, and user 
rebellion.

Topology-Related Defenses
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PathWell: Topology Blacklisting
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● Identify the worst (most common) topologies, and do not let any users set 
passwords that use them.

● The top-5 lists I showed earlier are a good start.

● We further data-mined our enterprise password cracks and built a longer 
list.  Find the list of the top 100 here:

● https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies

● Of course, these are also a good place to start if you are attempting to 
crack corporate passwords!

● As with most things we figure out, we assume bad guys had already 
worked this out for themselves.

PathWell: Topology Blacklisting
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● Attackers used to taking a top-N approach, either standalone or in 
combination with wordlist and other mangling-rule techniques, will 
suddenly get zero cracks from their early efforts, instead of ~25% in 
minutes.

● Attackers who figure out what’s being done will have to figure out what 
users did when they weren’t allowed to use the same old same old.

● However, it is likely that user populations would still find some new 
common topologies to converge on.  The effectiveness of blacklist-only 
will decay if it is the only, static, new defense.

PathWell: Blacklisting Effectiveness
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PathWell: Minimum Topology Change
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● Without wear-leveling, a user with password 'Kw#46_Ya' is 
most likely to set their next password to (say)  'Kw#47_Ya'

● Likewise, with wear-leveling, that user would likely chose 
'Kw#46_YA' – the smallest allowable topology change.

● So: the attacker who knows what a user's password topology 
was in the past, should search the topologies that are 
“nearest” to it.

● The KoreLogicRulesReplaceNumbers ruleset published back 
in 2010 can easily crack these variations.

PathWell: Minimum Topology Change
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Measuring Topology Change:
Levenshtein Distance
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● "...[T]he Levenshtein distance is a string metric for measuring the 
difference between two sequences. Informally, the Levenshtein 
distance between two words is the minimum number of single-
character edits (insertion, deletion, substitution) required to change 
one word into the other.”

● http://en.wikipedia.org/wiki/Levenshtein_distance
● Michael Scott

Measuring Topology Change:
Levenshtein Distance
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● "...[T]he Levenshtein distance is a string metric for measuring the 
difference between two sequences. Informally, the Levenshtein 
distance between two words is the minimum number of single-
character edits (insertion, deletion, substitution) required to change 
one word into the other.”

● http://en.wikipedia.org/wiki/Levenshtein_distance
● Michael Scott

● Sometimes also referred to as “edit distance.”

● kitten → mitten = 1
● abounds → abounded = 2
● dessert → desert = 1

Measuring Topology Change:
Levenshtein Distance
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For our examples earlier:

● Kw#46_Ya → Kw#47_Ya
ulsddsul → ulsddsul = Lev distance 0

● Kw#46_Ya → Kw#46_YA
ulsddsul → ulsddsuu = 1

Measuring Topology Change:
Levenshtein Distance
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For our examples earlier:

● Kw#46_Ya → Kw#47_Ya
ulsddsul → ulsddsul = Lev distance 0

● Kw#46_Ya → Kw#46_YA
ulsddsul → ulsddsuu = 1

● P4ssword17! → P4sswords17! 
udlllllldds → udllllllldds = 1

● P4ssword17! → P@ssword18z 
udlllllldds → usllllllddl = 2

Measuring Topology Change:
Levenshtein Distance
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PathWell: Topology Histogram Wear-Leveling
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PathWell: Topology Histogram Wear-Leveling
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User-Selected Topologies:
48% of passwords in top 5 buckets

We want to turn this...



PathWell: Topology Histogram Wear-Leveling
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Into this!

Wear-Leveled Topologies:
<= 1 password per bucket



PathWell: Topology Histogram Wear-Leveling
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User-Selected Topologies:
48% of passwords in top 5 buckets

Wear-Leveled Topologies:
<= 1 password per bucket



How much does topology wear-leveling increase the attacker's work-
factor?

● Attacker's work-factor thought of as “work needed to get the same 
percentage of cracks” or “cracks for the same work.”

● Best-case (fully random topologies): 6 orders of magnitude more 
work (one million times as long to get the same number of cracks, or 
one millionth as many cracks in the same time spent).

● Worst-case (attacker knows and goes after only those topologies in 
use): 2-3 orders of magnitude more work.

● Realistic case (topologies not fully random, attacker makes educated 
guesses): 4-5 orders of magnitude more work.

Topology Wear-Leveling Effectiveness

55



Don't blacklisting and topology wear-leveling reduce the 
keyspace that an attacker would have to test for valid 
passwords?

How much does this keyspace reduction help the attacker?

Cost of Topology-Related Defense:
Keyspace Reduction
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● Blacklisting: For 8-character, 4-charset passwords, there are 
4^8, or 65,536 topologies.  100 of them is less than 0.2% of the 
keyspace.  That is a trivial cost and we should gladly pay it. (The 
percentage cost drops for longer passwords, too.)

Cost of Topology-Related Defense:
Keyspace Reduction
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● Blacklisting: For 8-character, 4-charset passwords, there are 
4^8, or 65,536 topologies.  100 of them is less than 0.2% of the 
keyspace.  That is a trivial cost and we should gladly pay it. (The 
percentage cost drops for longer passwords, too.)

● Forcing unique topology use: has the downside that the odds 
that any one randomly selected topology will contain a password 
go up.

● This effect is worse for larger user populations.

● However, this is vanishingly small compared to the cost of, say, 
5-10% of all users using a single topology that the attacker can 
easily predict.

Cost of Topology-Related Defense:
Keyspace Reduction
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Will users revolt?

Cost of Topology-Related Defense:
Mutiny?
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Will users revolt?
● Any new control that adds work for them will be resisted.

● Could be mitigated by user-hinting and training (which have 
their own costs).

● Need to figure out how users respond to new requirements, 
and how to best explain them to minimize difficulty.

● What kind of hints can be provided to a user who tries a 
password that is not strong enough?

Cost of Topology-Related Defense:
Mutiny?
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Will users revolt?
● Any new control that adds work for them will be resisted.

● Could be mitigated by user-hinting and training (which have 
their own costs).

● Need to figure out how users respond to new requirements, 
and how to best explain them to minimize difficulty.

● What kind of hints can be provided to a user who tries a 
password that is not strong enough?
● Hints to the user might be hints to attackers, too.

Cost of Topology-Related Defense:
Mutiny?
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We released a PAM module that implements (all optional, 
administrator-controlled):

● Auditing

● Blacklisting

● Minimum Levenshtein distance

● Maximum use-count

● User hinting

PathWell PAM Module
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● Developed and tested on multiple Linux distributions; not yet 
tested on any other OS's with PAM support.

● Download the source code from 
https://git.korelogic.com/libpathwell.git/
● PathWell techniques described here are patented.
● Released open-source under the AGPL.
● Following the code license grants a patent license.
● Basically, free if you aren’t directly making money from using it.
● If you want to make money from using it, talk to us ;)

● The PAM module is actually a fairly thin wrapper around calls to 
the libpathwell library (also included).  The library could be used 
directly by LDAP servers, Java SSO implementations, etc.

PathWell PAM Module
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Audit mode:

● Each time a password is changed, increment a counter for that 
password's topology.

● Usage counters are not decremented when a password is changed 
(history lasts forever, unless zapped by an admin).

● Useful “standalone” (without enforcement) in order to quantify the 
problem in a given enterprise.

● Historical data is used by use-count enforcement.

● This DB is sensitive!  An attacker who captures it gets some nice hints.

● Current implementation can track topologies up to 29 characters long.

PathWell Audit Mode
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There are several Enforcement mode options, so that 
features can be enabled and configured independently.

PathWell Enforcement Mode
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Enforcement mode option: blacklisting

● Do not allow any user to set a password that uses a known-
overused topology.

● We include that list of common topologies I mentioned earlier.

● Administrators can replace or augment our default list with their 
own (enabling audit mode can help build up a local, organization-
specific list).

● Can also be used to enforce minimum-complexity requirements 
(blacklist all topologies that do not use 4 of 4 character classes, 
etc).

PathWell Enforcement Mode: blacklist
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● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices, they 
will probably make similar choices about what to switch to 
instead.

● We call that herding, and it is bad... in the long run, attackers 
just need to learn and adapt to the next-top-100 topologies and 
start over.

● Instead, we want mechanisms to not herd users in a group, but 
rather, shoo them and disperse them more widely across the 
possible topology space.

PathWell Enforcement Mode: blacklist
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● Note, blacklisting is not enough!

● If users are just denied their top 100 overused choices, they 
will probably make similar choices about what to switch to 
instead.

● We call that herding, and it is bad... in the long run, attackers 
just need to learn and adapt to the next-top-100 topologies and 
start over.

● Instead, we want mechanisms to not herd users in a group, but 
rather, shoo them and disperse them more widely across the 
possible topology space.

● ...But it is better than nothing.  You don't have to run faster than 
the bear...

PathWell Enforcement Mode: blacklist
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Enforcement mode option: minlev
● PathWell's minlev enforcement compares a user's old 

password's topology to the requested new one.
● minlev=1: new password's topology must not be the same as 

the old.  For a 10-char password, there are 30 topologies of 
the same length of Lev distance 1 for the attacker to target.

● minlev=2: new topology must be at least two changes away 
from the old.  For a 10-char password, there are 405 possible 
10-char topologies that are 2 Lev distance away (and more if 
the length is changed).

● This does not need audit mode to be enabled.

PathWell Enforcement Mode: minlev 
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Enforcement mode option: maxuse

● Requires that Audit Mode is enabled, because it needs to 
track things over time.

● Sets the maximum number of passwords that can use any 
given topology.

● Typically set to 1 (each password must use a unique 
topology... until exhaustion/rollover and admins increment it 
to 2, etc).

● If maxuse=1, then an attacker who bruteforces a topology 
will score at most one plaintext.

PathWell Enforcement Mode: maxuse
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Enforcement mode option: hintinfolevel
● Out of the box, the user gets no details about why a too-weak 

password was refused.
● In the latest release of libpathwell we added multiple admin-

tunable levels of user hinting, from nothing, to generic “try 
adding an uppercase letter as the fourth character and 
changing the last character to a number” to “You tried 
‘Kw#46_Ya’, how about ‘Kw#G46_Y7’ instead?”

PathWell Enforcement Mode: hintinfolevel
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Enforcement mode option: hintinfolevel
● Out of the box, the user gets no details about why a too-weak 

password was refused.
● In the latest release of libpathwell we added multiple admin-

tunable levels of user hinting, from nothing, to generic “try 
adding an uppercase letter as the fourth character and 
changing the last character to a number” to “You tried 
‘Kw#46_Ya’, how about ‘Kw#G46_Y7’ instead?”

● Choose carefully!  Higher hint levels not appropriate for all 
environments, such as if shoulder surfing is likely, etc.

● These are supported by the API, so other things besides 
PAM modules could make use of them.

● Note: the hint engine is only hooked up for blacklist violations 
so far.

PathWell Enforcement Mode: hintinfolevel
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Example /etc/pam.d settings:
● Default:

password  required  pam_cracklib.so difok=2 minlen=8 dcredit=2 ocredit=2 retry=3
password  required  pam_unix.so try_first_pass use_authtok nullok sha512 shadow
password  optional  pam_permit.so

● Audit mode adds:
password  optional  pam_pathwell.so mode=monitor use_authtok

● Blacklist mode adds:
password  required  pam_pathwell.so mode=enforce use_authtok blacklist

● Minlev mode adds:
password  required  pam_pathwell.so mode=enforce use_authtok minlev=2

● Maxuse mode adds:
password  required  pam_pathwell.so mode=enforce use_authtok maxuse=1
password  optional  pam_pathwell.so mode=monitor use_authtok

● Enabling the hint engine:
password  required  pam_pathwell.so mode=enforce use_authtok blacklist hintinfolevel=2

Full examples are included in README.PAM in the source code distribution.

Not A Demo (Canned Examples)
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● Successful password change user output:
patsy@marklar ~ $ passwd
Changing password for patsy.
Current password:
New password: Kw#46_Ya
Retype new password: Kw#46_Ya
passwd: password updated successfully

● Successful password change syslog message:

Apr 25 14:12:44 marklar passwd[27103]: 
  pam_pathwell(passwd:chauthtok): Release='0.7.0'; Library='2:0:0'; 
  Module='0:3:0'; PamFlags='0x00002000'; Mode='enforce';
  User='patsy'; Status='pass'; Reason='Password accepted.';

Example Logs & Output: Success
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● Failed (minlev=2 violation):
patsy@marklar ~ $ passwd
Changing password for patsy.
Current password: Kw#46_Ya
New password: Kw#47_Y4
Retype new password: Kw#47_Y4
pam_pathwell: The new password failed the minlev check.
passwd: Authentication token manipulation error
passwd: password unchanged

● Failed password change syslog messages:

Apr 25 14:14:16 marklar passwd[27121]: 
  pam_pathwell(passwd:chauthtok): Release='0.7.0'; Library='2:0:0'; 
  Module='0:3:0'; PamFlags='0x00002000'; Mode='enforce'; 
  User='patsy'; Status='fail'; Reason='Password rejected.';

Example Logs & Output: Minlev
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● Failed (maxuse=1 violation, minlev not enabled):
patsy@marklar ~ $ passwd
Changing password for patsy.
Current password: Kw#46_Ya
New password: Le$57+Us
Retype new password: Le$57+Us
pam_pathwell: The new password failed the maxuse check.
passwd: Authentication token manipulation error
passwd: password unchanged

● Failed password change syslog messages:

Apr 25 14:21:18 marklar passwd[27455]: 
  pam_pathwell(passwd:chauthtok): Release='0.7.0'; Library='2:0:0';
  Module='0:3:0'; PamFlags='0x00002000'; Mode='enforce'; 
  User='patsy'; Status='fail'; Reason='Password rejected.';

Example Logs & Output: Maxuse
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● Blacklist failure with hintinfolevel=2:
  
  patsy@marklar ~ $ passwd
  Changing password for patsy.
  Current password:
  New password: April2017!
  Retype new password: April2017!
  pam_pathwell:
                                            ullllddd ds
                                                    |
    insert a digit ---------------------------------+

   This should produce the following topology: ullllddddds

  passwd: Authentication token manipulation error
  passwd: password unchanged

Example Logs & Output: Blacklist Hinting
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● Blacklist failure with hintinfolevel=3:
  
  patsy@marklar ~ $ passwd
  Changing password for patsy.
  Current password:
  New password: April2017!
  Retype new password: April2017!
  pam_pathwell:
                                            April2017!
                                                  |   |
  replace with a lower case character ------------+   |
                                                      |
    insert a digit -----------------------------------+

   This should produce the following topology: ulllldlddsd

  passwd: Authentication token manipulation error
  passwd: password unchanged

(Reminder: hintinfolevels greater than 2 are not appropriate for 
most corporate environments.)

Example Logs & Output: Blacklist Hinting
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● Blacklist failure with hintinfolevel=4:
  
  patsy@marklar ~ $ passwd
  Changing password for patsy.
  Current password:
  New password: April2017!
  Retype new password: April2017!
  pam_pathwell:
                          A pril2017!
                          ||
    replace with '7' -----+|
                           |
      insert a ',' --------+

   This should produce the following password: 7,pril2017!

  passwd: Authentication token manipulation error
  passwd: password unchanged

(Reminder: hintinfolevels greater than 2 are not appropriate for 
most corporate environments.)

Example Logs & Output: Blacklist Hinting
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● More hints!
● Implement the hint engine for other modes – minlev, maxuse.

PathWell: Next Steps for the Project
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● More hints!
● Implement the hint engine for other modes – minlev, maxuse.

● More platforms!
● We have an Active Directory version in the works.

● Has some trade-offs for data storage, user interface, etc.
● We do not use Windows in production, so don’t have a good 

environment for long-term testing/support.
● Currently talking to some of our clients we do password audits for 

about being pilot sites.
● Anybody want to volunteer?

PathWell: Next Steps for the Project
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● More hints!
● Implement the hint engine for other modes – minlev, maxuse.

● More platforms!
● We have an Active Directory version in the works.

● Has some trade-offs for data storage, user interface, etc.
● We do not use Windows in production, so don’t have a good 

environment for long-term testing/support.
● Currently talking to some of our clients we do password audits for 

about being pilot sites.
● Anybody want to volunteer?

● Other platforms that don’t have PAM support?
● Very large websites, SSO platforms, LDAP servers, etc.?

● More enforcement options!
● Regular expression-based blacklisting should be easy to add.

[Dd].?[Ee].?[Nn].?[Vv].?[Ee].?[Rr]

PathWell: Next Steps for the Project
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How will attackers – cracking tools, techniques – adjust and 
adapt to PathWell?

PathWell: Next Steps for Attackers?
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Questions?

Hank Leininger <hlein@korelogic.com>
5F6D DCC8 FF53 8093 EC39  127B 091E 7F7C E898 E86C

PathWell Project <pathwell-project@korelogic.com>
9CCF 2BA6 4444 E8AA 36D5  315B 2ECC 5A37 25B2 CC97

Thanks to:
Klayton Monroe Sean Segreti
Shawn Wilson Mick Wollman
BITSys DARPA!
CMIYC Teams Hashcat / JTR

That's all folks
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● https://blog.korelogic.com/  ← has links to various other talks

● https://git.korelogic.com/libpathwell.git/  ← get the library & PAM module code 

● @CrackMeIfYouCan on Twitter

● CMIYC contest sites; past years have teams' writeups.  Start at 
http://contest.korelogic.com and follow links to each year.

● My coworker Rick Redman has given a number of talks about advanced 
password cracking techniques:
● Passwords13: http://www.youtube.com/watch?v=5i_Im6JntPQ
● ISSA: http://infosec-summit.issa-balt.org/html/2010_agenda.html

Rick goes into detail about advanced cracking techniques, where to download 
various rules we've written for different tools & how to write your own.

● An interesting study about studying password selection: “On The Ecological 
Validity of a Password Study”: 
http://cups.cs.cmu.edu/soups/2013/proceedings/a13_Fahl.pdf

Other Reading
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